SMART VISUAL BEACONS WITH ASYNCHRONOUS OPTICAL COMMUNICATIONS USING EVENT CAMERAS

AUSTRALIAN NATIONAL UNIVERSITY

 

Ziwei Wang, Yonhon Ng, Jack Henderson, Robert Mahony

ABSTRACT

Event cameras are bio-inspired dynamic vision sensors that respond to changes in image intensity with a high temporal resolution, high dynamic range and low latency. These sensor characteristics are ideally suited to enable visual target tracking in concert with a broadcast visual communication channel for smart visual beacons with applications in distributed robotics. Visual beacons can be constructed by high-frequency modulation of Light Emitting Diodes (LEDs) such as vehicle headlights, Internet of Things (IoT) LEDs, smart building lights, etc., that are already present in many real-world scenarios. The high temporal resolution characteristic of the event cameras allows them to capture visual signals at far higher data rates compared to classical frame-based cameras. In this paper, we propose a novel smart visual beacon architecture with both LED modulation and event camera demodulation algorithms. We quantitatively evaluate the relationship between LED transmission rate, communication distance and the message transmission accuracy for the smart visual beacon communication system that we prototyped. The proposed method achieves up to 4 kbps in an indoor environment and lossless transmission over a distance of 100 meters, at a transmission rate of 500 bps, in full sunlight, demonstrating the potential of the technology in an outdoor environment.

Source: Arxiv

PRODUCTS USED IN THIS PAPER

SEARCH PUBLICATION LIBRARY

Don’t miss a bit,

follow us to be the first to know

✉️ Join Our Newsletter