SPADES: A REALISTIC SPACECRAFT POSE ESTIMATION DATASET USING EVENT SENSING

UNIVERSITY OF LUXEMBOURG, UNIVERSITE DE STRASBOURG

Arunkumar RathinamHaytam QadadriDjamila Aouada

 

ABSTRACT

In recent years, there has been a growing demand for improved autonomy for in-orbit operations such as rendezvous, docking, and proximity maneuvers, leading to increased interest in employing Deep Learning-based Spacecraft Pose Estimation techniques. However, due to limited access to real target datasets, algorithms are often trained using synthetic data and applied in the real domain, resulting in a performance drop due to the domain gap. State-of-the-art approaches employ Domain Adaptation techniques to mitigate this issue. In the search for viable solutions, event sensing has been explored in the past and shown to reduce the domain gap between simulations and real-world scenarios. Event sensors have made significant advancements in hardware and software in recent years. Moreover, the characteristics of the event sensor offer several advantages in space applications compared to RGB sensors. To facilitate further training and evaluation of DL-based models, we introduce a novel dataset, SPADES, comprising real event data acquired in a controlled laboratory environment and simulated event data using the same camera intrinsics. Furthermore, we propose an effective data filtering method to improve the quality of training data, thus enhancing model performance. 

 

Source: Arxiv.org

 

PRODUCTS USED IN THIS PAPER

SEARCH PUBLICATION LIBRARY

Don’t miss a bit,

follow us to be the first to know

✉️ Join Our Newsletter