Event-Based Vision: Bringing More Performance and Efficiency to Improve Machine Vision Applications

Presented by: Prophesee

February 1, 2024

Introducing Your Moderator

Maureen Frost

Content Strategist Association for Advancing Automation (A3)

mfrost@automate.org

+1 734-719-0927

A3: Association for Advancing Automation

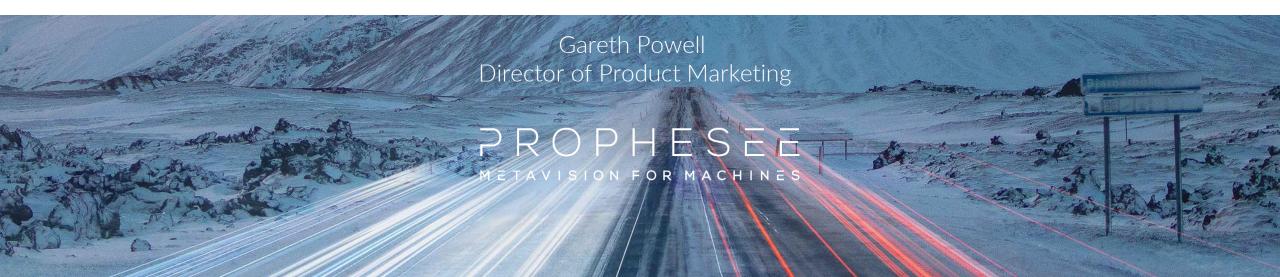
ASSOCIATION FOR ADVANCING AUTOMATION

WWW.AUTOMATE.ORG

Thanks to our Exclusive Sponsor

METAVISION FOR MACHINES

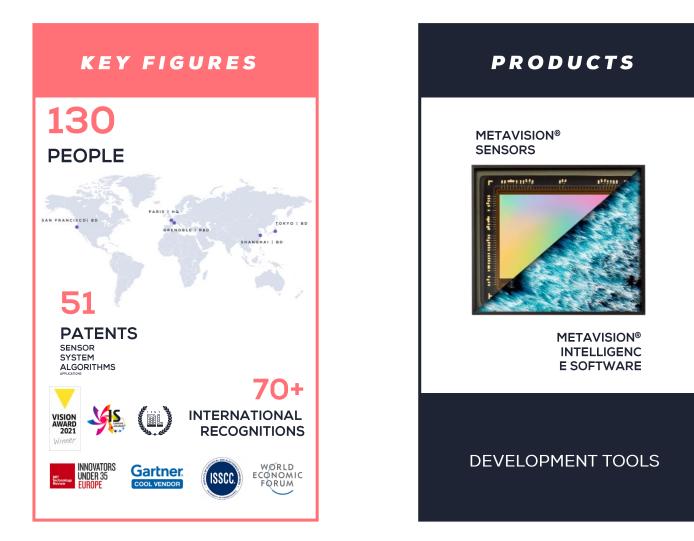
Introducing Your Presenter



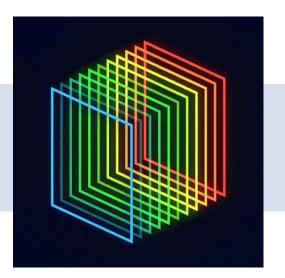
Gareth Powell Product Marketing Director Prophesee

Event-Based Vision Sensing

Bringing more performance and efficiency to improve machine vision applications



AGENDA


- Brief introduction about Prophesee
- The Event Sensor (EVS) compared with the CMOS Image Sensor
- The Prophesee offer: sensors and software
- Industrial market application EVS use cases and benefits
- AI and Machine Learning with EVS
- The future: EVS markets and penetration
- Wrap up, Questions and Answers

A B O U T U S

PROPHESEE

FRAMES VS EVENTS



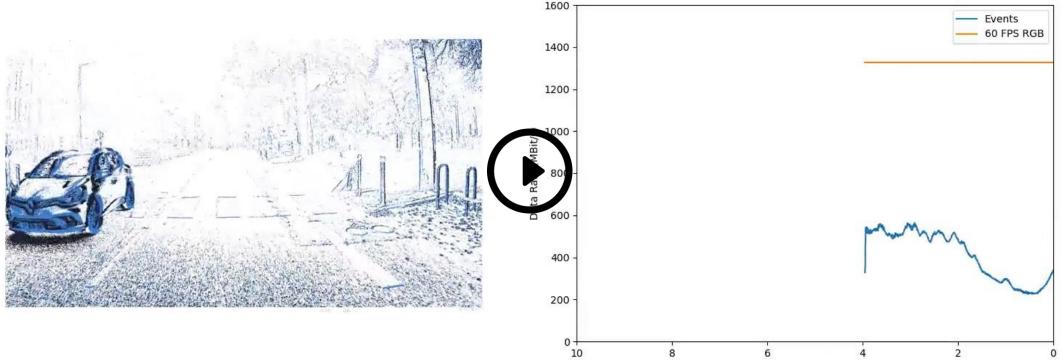
- 1. Generates **sequential** static pictures
- 2. Clock-driven (pre-defined frame rate)
- 3. Needs **exposure times**
- 4. Fix amounts of data
- 5. Beautiful pictures for **human consumption** (High-resolution, color...)

- 1. Generates **continuous** events (asynchronous intelligent pixels)
- 2. **Scene-driven** (1µs time resolution 10,000 fps equivalent)
- 3. No exposure time (120dB HDR / 40mlux low light sensitivity)
- 4. Amounts of data **vary with scene dynamics** (10x to 1000x less)

HOW DO (PROPHESEE) EVENT SENSORS WORK..

GENERATES CONTINUOUS EVENTS (ASYNCHRONOUS INTELLIGENT PIXELS)

()


SCENE-DRIVEN (1µS TIME RESOLUTION - 10,000 FPS EQUIVALENT)

(>)

AMOUNT OF DATA VARY WITH SCENE DYNAMICS (10X TO 1000X LESS)

DATA RATE EVENT CAMERA VS FRAMES

Seconds

DATARATE REDUCTION

- > No information loss
- > Less than 10 Mbits/s in average
- > 30x compared to frame-based camera

EVENTS ARE DISCRETE POINTS IN TIME

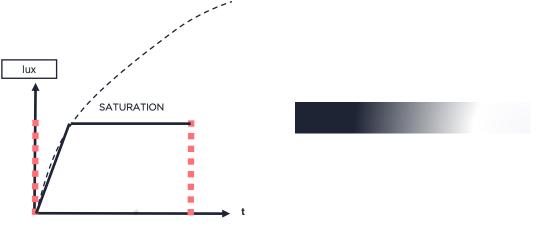
UNIFORM EXPOSURE SET ON THE SCENE -> HIGH COMPARED TO SPEED = MOTION BLUR

ASYNCHRONOUS PER-PIXEL EVENT WITH NO EXPOSURE PERIOD

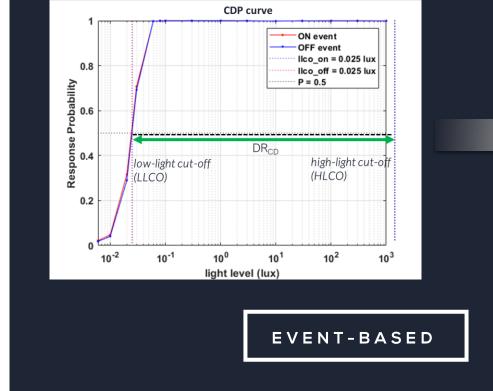
FRAME-BASED

EVENT-BASED

BENEFITS OF EVS OVER CMOS SENSING:


- DOES NOT CREATE BLURRED EDGES ON MOVING OBJECTS
- NO PIXEL EXPOSURE MECHANISM OR FRAME CONCEPT ONLY FEW 10s OF μS Latency

PROPHESEE


EVENT SENSORS ARE INHERENTLY HDR

UNIFORM PREDETERMINED EXPOSURE

INDIVIDUAL PIXEL SAMPLING with LOG RESPONSE

FRAME-BASED

- 120 to 140dB HDR PERORMANCE
- GOOD PERFORMANCE AT LOW-LIGHT (OPERATING BELOW 50mLux)

END-TO-END NEUROMORPHIC SOLUTIONS

PROCESSING

SENSING

METAVISION INTELLIGENCE SUITE Metavision © SDK First

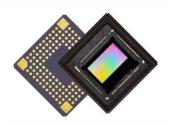
First Commercial Launch 2021

Open-Source Offer to Inventors and Researchers Community

100+ Algorithms of Computer Vision and Al, Datasets, Application Examples

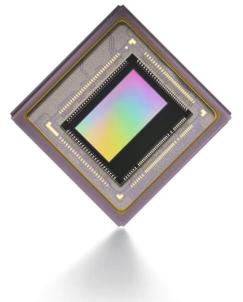
update releases

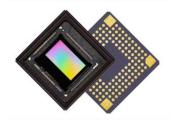
Evaluation tools and reference kits


Metavision[®] Intelligence and OpenEB users

International Awards for Metavision® Intelligence Suite

Event-Based Vision Sensor Jointly Developed

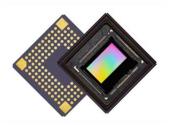

PROPHESEE & SONY



IMX636 - HD

KEY FEATURES

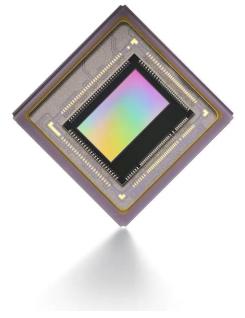
- Resolution; 1280x720
- Optical format: 1/2.5"
- Ultra-High Speed: Latency: 220µs
- Dynamic Range >110dB
- Nominal contrast threshold: 25%
- Pixel size: 4.86 x 4.86µm
- Event Signal Processing embedded

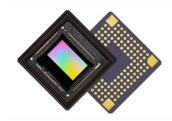

IMX637 - VGA

KEY FEATURES

- Resolution; 640x480
- Optical format: 1/4.5"
- Ultra-High Speed: Latency: 220µs
- Dynamic Range >110dB
- Nominal contrast threshold: 25%
- Pixel size: 4.86 x 4.86µm
- Event Signal Processing embedded

Event-Based Vision Sensor Jointly Developed

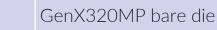

PROPHESEE & SONY



IMX646 - HD

KEY FEATURES

- Resolution; 1280x720
- Optical format: 1/2.5"
- High Speed: Latency: 800µs
- Dynamic Range >120dB
- Nominal contrast threshold: 25%
- Pixel size: 4.86 x 4.86µm
- Event Signal Processing embedded


IMX647 - VGA

KEY FEATURES

- Resolution; 640x480
- Optical format: 1/4.5"
- High Speed: Latency: 800µs
- Dynamic Range >120dB
- Nominal contrast threshold: 25%
- Pixel size: 4.86 x 4.86µm
- Event Signal Processing embedded

GENX320 NEW PRODUCT

Product

GenX320MP CM2 flex module

CCAM5 GenX320MP COB module (no optics)

CCAM5 GenX320MP CM2 flex module

EVK3 with CCAM5 GenX320 COB module (with S-Mount optic)

EVK3 with CCAM5 GenX320 CM2 module

GenX320 COB module with interface to STM32F7 discovery kit

KEY FEATURES

- 320x320 array of 6.3µm contrast detection pixels (1/5" format)
- Event data output with row-level 1µs-precision time stamping
- 0.05 lux Low light cutoff
- High dynamic range >120dB
- Multiple power modes:
 - always-on ultra-low power mode
 - full-awareness low power mode
 - standard full performance mode
- Embedded Anti-flicker filtering (AFK), Event-rate Controller (ERC), and Spatio-temporal Contrast filter (STC).
- ML-friendly compressed and uncompressed event data streams
- 1-lane MIPI or configurable 8-bit parallel interface
- I²C and Four-wire serial peripheral interface.

GENX320 LOW POWER

MODE	ULP PASSIVE	LP	CPI STREAMING	CPI STREAMING	MIPI STREAMING
Sub-System		low activity	100KEPS CPI @ 10MHz	1MEPS CPI @ 10MHz	10MEPS MIPI @ 800MHz
pixel array	3x3 GCD	320 x 320 pixels	320 x 320 pixels	320 x 320 pixels	320 x 320 pixels
Digital ICN + CPU	Powered down	Powered, Clocked	Powered, Clocked	Powered, Clocked	Powered, Clocked
Digital readout	Powered down	Powered, Clocked	Powered, Clocked	Powered, Clocked	Powered, Clocked
Digital ESP + output I/F	Powered down	Powered, Gated	Powered, Clocked	Powered, Clocked	Powered, Clocked
	Total: 36µW	Total: 2.9mW	Total: 3mW	Total: 4.8mW	Total: 22.8mW
324 px					

324 px	1 iphoto	1 iphoto	1 iphoto
	cluster	cluster	cluster
108 px	1 iphoto	1 iphoto	1 iphoto
	cluster	cluster	cluster

108 px

108 px

108 px

	MIPI	8b parallel
max. event rate	1 Gevt/s	250 Mevt/s
signaling standard	MIPI	CMOS logic
number of lanes	1	8
Max bit rate	max. 1.5Gb	200Mb @ 25MHz
modes / encoding	variable size + variable rate fixed size + variable rate fixed size + fixed rate	EVTx direct EVTx in JPEG container (STM32) serial 4bit word parallel AER

GENX320 PRINCIPAL MARKETS

	AR/VR - WEARABLES	IOT/Edge AI/Smart-homes	Consumer TV/PC/Gaming
APPLICATION	 Short distance Tracking: Eye, Hands, Gesture 	 Edge Detection & classification Smart doorbell Fall Detection Space awareness/SLAM TinyML ecosystem 	 Gesture recognition (no remote) Audience and statistics feedback on media content/publicity Multiple DOF (degrees of freedom) constellation tracking
EVS VALUE	 Speed & very limited data rate yielding low computational cost and much lower power consumption Eliminates thermal discomfort of users. 	 Addresses privacy concerns versus CMOS image sensors Low power & smart wake-up Increased autonomy Activity detection & classification 	 Addresses privacy concerns versus CMOS image sensors Can work with no lens. Activity detection & classification EVS with frequency filtering to completely remove background and transmit spatial pose info of markers only

THE MOST COMPREHENSIVE EVENT BASED VISION SOFTWARE SUITE

LEADING ML TOOLKIT

95 algorithms

79 code samples

24 tutorials

6 EXTENSIVE MODULE FAMILIES

MACHINE LEARNING

CALIBRATION

DETECTION INFERENCE

VIDEO TO EVENT

CALIBRATION

DETECTION TRAINING

EVENT TO VIDEO

EDGELET TRACKING

DETECTION KPI

PARTICLE SIZE

NEW

MONITORING

. .

. . .

ACTIVE MARKER

.

OPTICAL FLOW

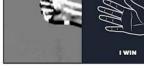
1

Ś

INFERENCE

OPTICAL FLOW TRAINING

GESTURE CLASSIFICATION GESTURE CLASSIFICATION TRAINING

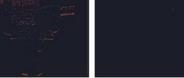


XÝt

SPATTER MONITORING

HIGH-SPEED COUNTING

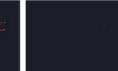
XYT VISUALIZATION

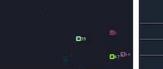

DATA RATE VISUALIZATION

ULTRA SLOW MOTION

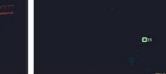
OPTICAL FLOW

OBJECT TRACKING VIBRATION MONITORING

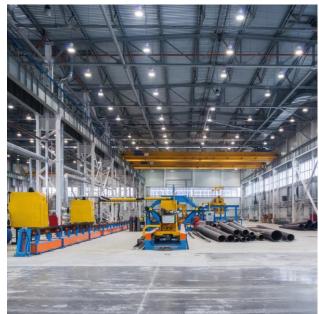






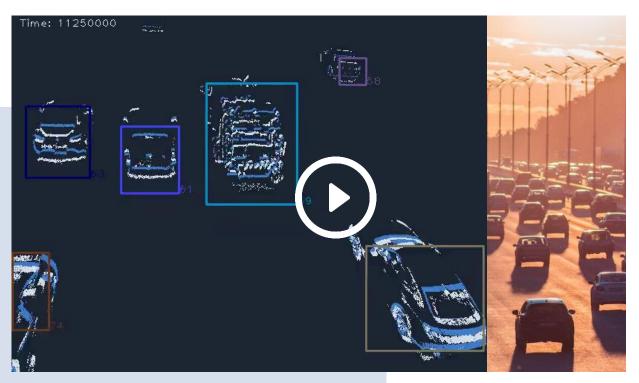


.


Use cases

- MV market needs
- EVS Use case examples and unique benefits

INDUSTRIAL MV CUSTOMERS NEEDS

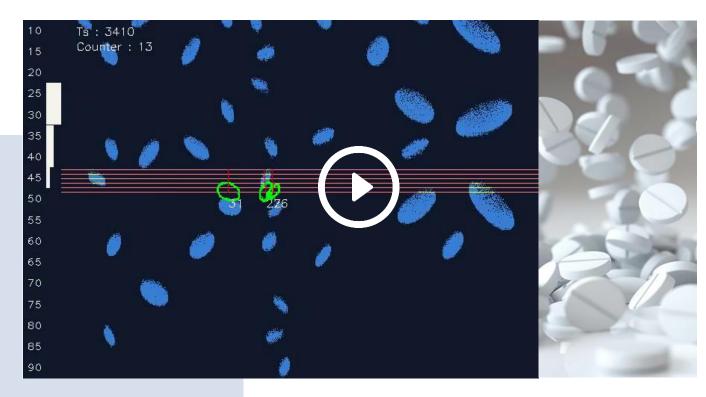

- Increased productivity
- Differentiation in a crowded market where everyone uses the same CMOS sensors
- Reduce system level costs to retain competitivity
- More intelligence/autonomy at the edge to reduce cloud storage/processing time
- Future-proof solutions to enable increased throughput with adoption of AI/ML technology
- Reduce the illumination power and cost
- Need to reduce carbon footprint (Ind 4.0)

OBJECT TRACKING

Typical applications: Traffic Monitoring, AMR/Robot navigation (2D/3D), Industrial safety

OBJECT TRACKING

Track moving objects in the field of view. Leverage the **low data-rate and sparse information** provided by event-based sensors to track objects with **low compute power**.


Continuous tracking in time: no more "blind spots" between frame acquisitions Native segmentation: analyze only motion, ignore the static background

PARTICLE SIZE MONITORING

Typical applications: High speed counting/sorting, Batch homogeneity & Gauging

PARTICLE/OBJECT SIZE MONITORING

Control, count and measure the size of objects moving at very high speed in a channel or a conveyor.

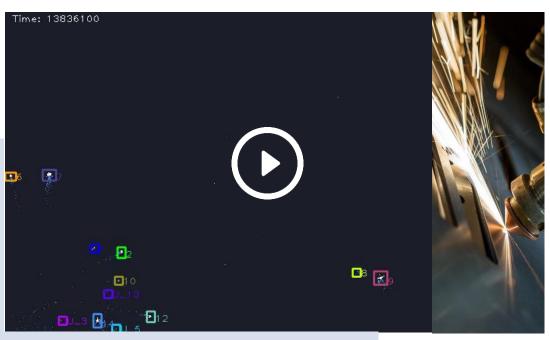
Up to 500 000 pix/s speed >99% counting precision

PLUME MONITORING

Typical applications: Dispensing uniformity & Coverage control, Quality & efficiency of dispersion, Fluid dynamics analysis for inline process monitoring, Agriculture

HIGH-SPEED PLUME MONITORING (Aerosols-Spray)

Real time analysis and monitoring of spray dispensing of fluids.


Ultra slow-motion view (200.000 equiv. fps) for homogeneity and optical flow for direction and velocity of plume & PIV.

SPATTER MONITORING

Typical applications: Traditional miling, laser & process monitoring, Quality prediction

SPATTER MONITORING

The high temporal resolution and dynamic range of the Event-Based Vision sensor allows small particles to be tracked in the most demanding environment.

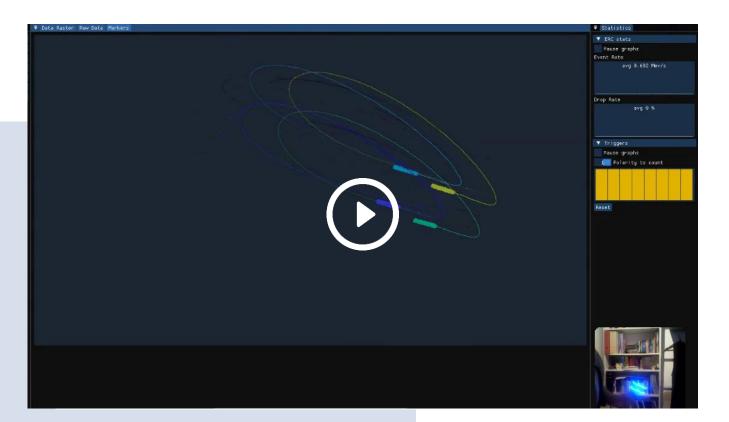
Up to 200k fps rendering (5 μs time resolution) Simulatenous XYT tracking of all particles with up to 140dB dynamic range

VIBRATION & FREQUENCY MONITORING

Typical applications: Motion monitoring, Vibration monitoring, Frequency analysis for predictive maintenance

VIBRATION & FREQUENCY MONITORING

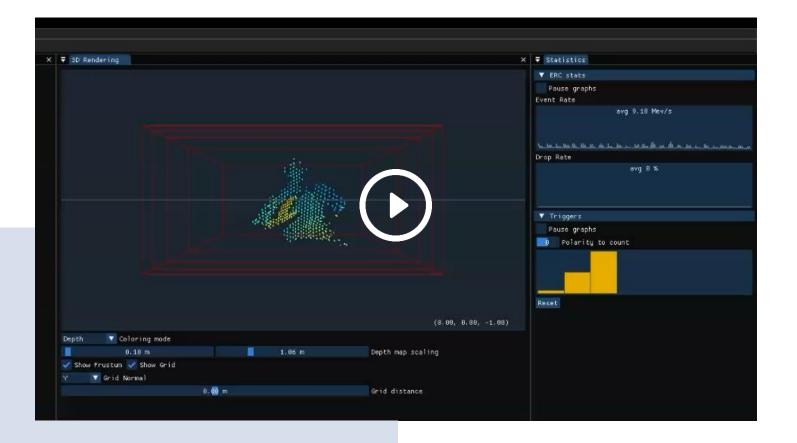
From 1Hz to kHz range


<0.1Hz Accuracy of measurements

1 Pixel Spatial accuracy

Non-intrusive, Noncontact, Easy to setup

ACTIVE-MARKERS APPLICATION


Typical applications: Motion monitoring, 3D pose estimation, remote controls , safety systems

- Detect very accurately light pulses
- Total background extraction
- Encodes values in pulse intervals
- Can provide 3D info
- Active markers with multiple DoF
- Each marker has a different ID

EVS 3D STRUCTURED LIGHT

3D Structured light with IMX636 Event-Based Metavision® sensor

- Up to 600Hz Point cloud generation
- <1.5% RMSE error @600Hz
- 3x baselines for short, medium and long ranges

3D TECHNOLOGIES COMPARISON

	Stereo (passive)	Structured light (CMOS Imager)		Time of Flight	PROPHESEE Structured light
Distance & range	Medium to far (depending on the baseline)	Short to medium	Short & limited	Far & scalable	Short to medium
Resolution	GOOD	GOOD	GOOD	FAIR	GOOD
Depth accuracy	FAIR	GOOD	VERY GOOD	FAIR	GOOD
Software complexity	BAD	FAIR	FAIR	GOOD	GOOD
Real-time capability	BAD	BAD	BAD	GOOD	VERY GOOD
Low light	BAD	GOOD	GOOD	GOOD	GOOD
Outdoor	GOOD	BAD	BAD	BAD to FAIR	GOOD
Compactness	FAIR	FAIR	FAIR	GOOD	FAIR
Energy per single 3D scan	GOOD	BAD	BAD	BAD	GOOD to FAIR
					Best overall performance

MAIN BENEFITS FOR PROCESSING EVENTS WITH ML MODELS

1. ULTRA-LOW LATENCY

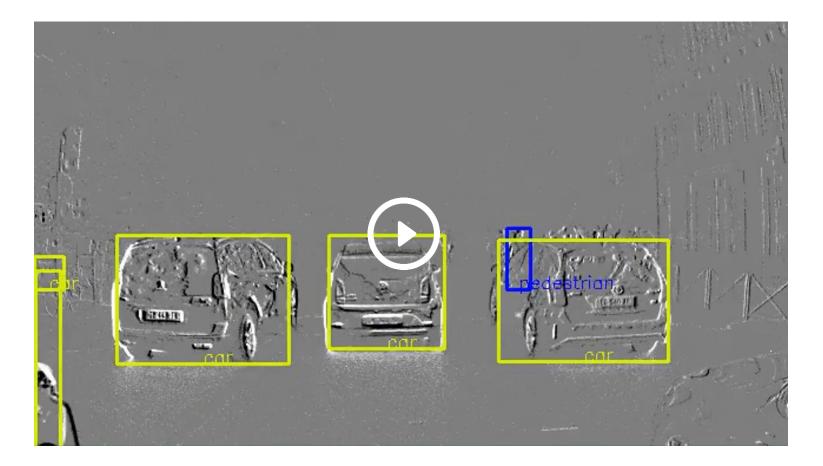
- High temporal resolution allows lower latency detection
- Inference at any rate is virtually possible
- Only limited by computation time

2. REDUCED COMPUTATION

- Learn simpler patterns and features
- No need to learn invariance to background (for static camera)

3. EASIER GENERALIZATION

- Light invariance allows for easier generalization
- E.g. models trained at day light perform with night scenes


ULTRA-LOW LATENCY

Event-based benefit 1: Temporal Resolution

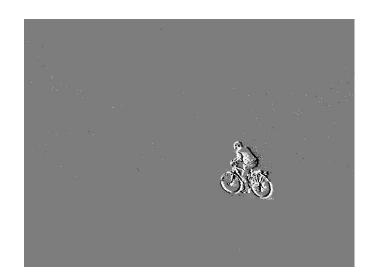
- Low-latency detection
- Continuous data nothing missed between frames
- Inference at high rates

Event-Based automotive dataset:

- 7 classes (Car, truck, van, pedestrian, two-wheeler, ...)
- 25M boxes for object detection and tracking
- HD 1280x720 event camera resolution

50Hz inference VGA sensor on mobile processor (cfr. Frame-based Mobilenet-v2 13Hz)

DATA SPARSITY


Event-based benefits 2:

Sparsity

- Sparse input allows for reduced computation
- Learn simpler patterns
- No need to learn invariance to background

Frames: Complex Background Complex Texture

Events: Only relevant contrast features

LIGHT INVARIANCE

Event-based benefit 3:

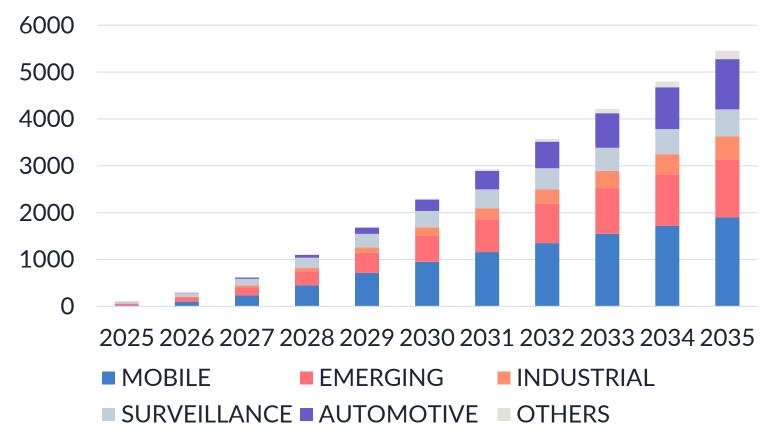
Light invariance

- Event sensors react to **relative changes**, independently of **absolute light levels**
- Light invariance allows for **easier generalization** of ML models

PROPHESEE

OBJECT DETECTION NIGHT

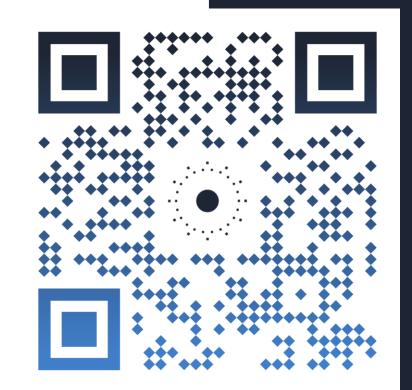
Light invariance


Inference on night data with network trained only with day data

Wrap Up

- Event sensing has come-of-age thanks to modern stacked BSI wafer technology
- EVS is ideal for **machine vision** (pre-sorted at pixel level, fast, high robustness to challenging lighting conditions), motion-understanding capabilities by design.
- 2024 will see the release of several major EVS based MV cameras from major players
- Future-proof AI/ML with perfect match to growing SNN techniques that offer lowest latency and power for complex tasks

NEUROMORPHIC SENSING WILL PENETRATE 10% OF THE TOTAL CIS MARKET BY 2030



Développement

EB Sensor Market will reach 2B by 2030:

- **MOBILE** (40%),
- EMERGING applications in CONSUMER (AR/VR, Gaming, Robotics, Smart Home/Building) and AUTOMOTIVE (DMS, ADAS) (35%)
- INDUSTRIAL (8%)
- **OTHERS** (17%)

THANK YOU

www.prophesee.ai

Next Webinar on February 8, 2024

Level Up: Mastering Social Media Analytics with Strategies for Data-Driven Success

Key Takeaways:

- Understanding Social Media Strategy
- Understanding Key Metrics
- Actionable Insights

www.automate.org/webinars

The largest, most-important robotics and automation trade show in North America!

REGISTRATION IS OPEN FOR AUTOMATE 2024

Join us May 6–9, 2024 · Chicago, Illinois, USA

Thank You!

Gareth Powell Product Marketing Director Prophesee

Maureen Frost Content Strategist Association for Advancing Automation (A3) <u>mfrost@automate.org</u> +1 734-719-0927 WWW.AUTOMATE.ORG

ASSOCIATION FOR ADVANCING AUTOMATION