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   Dear Editor,
This  letter  presents  a  novel  dynamic  vision  enabled  contactless

cross-domain fault diagnosis method with neuromorphic computing.
The event-based camera is adopted to capture the machine vibration
states in the perspective of vision. A specially designed bio-inspired
deep  transfer  spiking  neural  network  (SNN)  model  is  proposed  for
processing the event streams of visionary data, feature extraction and
fault diagnosis. The proposed method can also extract domain-invari-
ant features from different machine operating conditions without tar-
get-domain  machine  faulty  data.  Experiments  on  rotating  machines
are carried out  for  validations of the proposed method,  and the pro-
posed method is verified to be effective in contactless fault diagnosis.

Related work: Rotating  machines  are  widely  used  in  the  field  of
industrial  manufacturing [1],  [2].  Once the rotating machine fails,  it
will affect the overall performance of the mechanical equipment and
even  cause  serious  safety  accidents.  Therefore,  it  is  particularly
important  to  develop  efficient  fault  diagnosis  method  for  rotating
machines [3], [4].

In the past years, a large number of machine learning-based meth-
ods  have  been  proposed  to  solve  the  fault  diagnosis  problems  of
rotating machines [5]−[7].  Not only that,  deep learning-based meth-
ods  are  also  developing  rapidly  [8]−[10].  However,  the  existing
methods  for  capturing  the  vibrations  of  rotating  machines  still  have
significant  limitations  in  deployment  in  industrial  applications.
Recently,  event-based cameras have been used to capture the vibra-
tions  of  rotating  machines.  Different  from  traditional  vision-based
fault  diagnosis  tasks  [11],  event  vision-based  methods  have  more
advantages, but there are very few related studies. Li et al. [12] used
event-based cameras to conduct contactless fault diagnosis of rolling
bearings  and  achieved  reliable  results.  However,  this  method  still
uses traditional neural network as the feature extraction network and
loses the temporal characteristics of the data.

The  SNN  is  a  special  bio-inspired  structure  that  can  process  the
temporal  characteristics  contained  in  the  data  and  has  lower  energy
consumption.  Therefore,  this  special  structure  has  good  application
prospects in engineering [13], [14]. Xu et al. [15] introduce attention
mechanism  into  SNN  for  bearing  fault  diagnosis.  Zhang et  al. [16]
completed  end-to-end  model  training  on  the  rolling  bearing  dataset
using  SNN  with  convolution.  Although  the  existing  researches  on
SNN have achieved some results, the advantages have not been fully
demonstrated.

Problem  statement: Intelligent  fault  diagnosis  algorithms  for
rotating  machines  have  achieved  great  success  in  recent  years.  The
most popularly used signal for fault diagnosis is the vibration accel-
eration  data  collected  from  contact  accelerometers.  However,  the
contact accelerometers have significant limitations in deployment in
industrial  applications  and  the  other  existing  contactless  sensors  are
often costly or ineffective. Meanwhile, the common deep neural net-

work-based methods  have  high  requirements  on  computations.  That
makes the current mainstream intelligent fault diagnosis methods less
applicable  in  the  real  engineering  problems.  In  addition,  it  often
occurs that the distribution of training data (source domain) and test-
ing data (target domain) are inconsistent [17],  and usually the train-
able parts of the target domain do not contain faulty data. In order to
solve the above problems, we propose a dynamic vision enabled con-
tactless cross-domain method with neuromorphic computing for fault
diagnosis of rotating machines.

E = {ei}NT
i=1 ei

Intelligent  fault  diagnosis  method: In  this  letter,  we  use  the
event-based  camera  to  capture  vibrations.  The  event-based  camera
records  the  light  and  shade  changes  of  the  target  area  and  outputs
them in asynchronous event streams. The event streams can be repre-
sented as , The individual event  can be expressed as
 

ei = (ti, xi,yi, pi) (1)
ti xi yi

pi
pi = 1

pi = −1
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where  represents the time when the i-th event occurs,  and  rep-
resent the x-axis and y-axis positions where the event occurs.  rep-
resents the polarity of the event,  indicates that the brightness of
the position increases, and  indicates that the brightness of the
position decreases. The shape of a single sample is , where

 is  the time step of the event,  which represents the time length of
the sample, and  and  are the lengths of the x and y-directional,
respectively, which are related to the selected RoI.

After  that,  a  bio-inspired  SNN  model  is  proposed  for  processing
the event streams. Compared with the traditional neural network, the
SNN has a more efficient and energy-saving structure. The SNN pro-
cesses  data  in  a  completely  new  way,  specifically,  the  spiking  data
are all in the form of spikes of 0 and 1. As one of the most popular
spiking neurons, leaky integrate and fire (LIF) neurons are often used
for computation of spiking data,
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where  represents the time step,  is the time constant,  and  rep-
resent  the  membrane  potential  and  output  of  the  LIF  neuron,  is
the  resting  potential  of  the  LIF  neuron  membrane,  is  the  reset
potential  of  the  LIF  neuron  membrane,  and  is  the m-th  The
weight of each synapse,  is the integration time window,  is the
moment when the n-th pulse of the m-th synapse is excited within the

 window,  represents the delay kernel function,  is the igni-
tion threshold.

In this letter, SNN with convolution (SCNN) is used as the feature
extraction  network.  The  parameters  of  the  SNN  model  designed  in
this letter mainly refer to the structures of the existing traditional con-
volutional networks which have been widely proven to be effective.
Specifically,  the  SNN  proposed  in  this  letter  contains  a  bottleneck
block for feature extraction, and a classifier for feature classification.
As shown in Table 1,  we first  use  two convolutional  layers  for  fea-
ture extraction, and two max-pooling layers for feature compression.
Next, the features are flattened and output through two linear layers
for  feature  classification,  and  the  activation  function  in  SCNN  is
replaced by the spiking layers.

Vt

In rotating machine fault diagnosis, using effective domain adapta-
tion methods to narrow the distribution difference between the source
domain and the target domain often achieves satisfactory results [18].
In  this  letter,  the  maximum  mean  difference  (MMD)  between  the
source  domain  and  the  target  domain  is  first  calculated.  However,
compared  with  conventional  data  types,  the  output  of  SNN has  one
more  time  dimension .  Therefore,  this  letter  combines  the  time
dimension of the SNN outputs,
 

v =
T∑

t=1

st (4)

v stwhere  represents  the feature value,  and  represents  the spikes of
the SNN output at time t. Next, the MMD can be calculated,
 

MMDk(S ,T ) ≜ ∥ES
[
φ(xs)

]−ET [φ(xt)]∥2Hk
(5)
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Hkwhere  represents  the  reproducing  kernel  Hilbert  space  (RKHS)
with characteristic kernel k.  Therefore, the objective function to cal-
culate the distribution difference between the source domain and the
target domain can be defined as
 

min
f ( j)

Lmmd =MMD
k

(S f ( j),T f ( j)) (6)

S f ( j) T f ( j)

Linter
Lintra

where  and  represent  the j-th  layer  features  of  the  source
domain  and  the  target  domain,  respectively.  In  addition,  this  letter
proposes a deep distance metric learning method inspired by [18], the
metrics  we  use  include  inter-class  separability  and  intra-class
compactness respectively ,
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where  represents the characteristics of the i-th type of data
after  the m-th  layer.  represents  the  number  of  categories.  The
objective function for metric learning can be defined as
 

min
f ( j)

Lmetric = αLintra −βLinter. (9)

In  summary,  this  letter  mainly  proposes  a  novel  dynamic  vision
enabled contactless cross-domain fault diagnosis method with neuro-
morphic  computing,  the  overall  fault  diagnosis  process  is  shown  in
Fig. 1. The event-based camera is adopted to capture the vibrations of
rotating  machines,  and  a  bio-inspired  deep  transfer  SNN  model  is
proposed for processing the event streams.

Experimental  study: The  method  proposed  in  this  letter  is  veri-
fied on the rolling bearing test rig, as shown in Fig. 2. The test rig is
driven by a motor and the motor drives the shaft through a coupling.
The bearing model on the shaft is ER-16K, and the event-based cam-
era is placed in front of the bearing, The event-based sensor used in
this letter is Prophesee 3.1.

This experiment includes four types of states of rolling bearings in
total,  including  healthy,  outer  ring  fault  (Outer),  inner  ring  fault
(Inner)  and  rolling  element  fault  (Ball).  The  source  domain  data  is
collected at a rotational speed of 40 Hz, and the target domain data is

collected at 30 Hz. The settings when generating samples are as fol-
lows. The number of time steps is 10, the time length of a single time
step is 1ms, the RoI size is 30×30. In this experiment, a total of 1000
samples are generated for each class, the size of training sets is 800,
and the size of testing sets is 200.

In order to verify the effectiveness of the method proposed in this
letter,  we  have  completed  different  methods  at  the  same  time  as  a
comparison. Specifically, this leftter also studies the following meth-
ods.

1) CNN only: This method is a basic control experiment. We only
use  CNN  as  the  basic  feature  extraction  network,  and  the  domain
adaptation method is not used.

2) SNN only: In this method, the structure of the CNN network is
converted to the SNN used in this letter, so as to form a contrast, and
the domain adaptation method is not used for model training as well.

3)  TCNN:  This  method  uses  the  mainstream  CNN  network  and
combines the domain adaptation method, in order to verify the com-
petitiveness of  the method used in this  letter.  Therefore,  except  that
we  replaced  the  SNN in  the  proposed  method  with  CNN,  the  other
parts are exactly the same.

The  training  accuracies  of  the  four  methods  are  shown  in Fig. 3.
Each type of method was conducted three times, and the experimen-
tal results are shown in Table 2. Fig. 4 uses tSNE to intuitively show
the distribution of features extracted by the four types of methods in
the  source  and  target  data. Fig. 5 is  an  intuitive  comparison  of  the
spiking outputs and the corresponding label.

From the experiments in this letter, it can be concluded that, first of
all,  the  method  proposed  in  this  letter  is  highly  competitive  com-
pared with the traditional CNN-based method. The average precision
of  the  method  proposed  in  this  letter  can  reach  98.12%,  slightly
higher than 95.99% of the CNN-based method, and the convergence
speed  during  training  is  faster.  In  addition,  the  SNN-based  cross-
domain  fault  diagnosis  method  used  in  this  letter  improves  model
performance under different rotating speeds. Compared to the meth-
ods without cross-domain algorithms, the average accuracy proposed
method increases by around 13%. Moreover, the method proposed in
this letter has a good application prospect. Due to the advantages of
SNN, the proposed method can be much more energy efficient com-
pared with traditional CNN-based methods.

Conclusions: This  letter  presents  a  novel  dynamic vision enabled
contactless  cross-domain  fault  diagnosis  method with  neuromorphic
computing. The event-based camera is used to capture the vibrations
of the rotating machines, and the vibration signals are processed by a

 

Table 1.  The SNN Model Proposed in This Letter
Num Layer Input Output

1 Conv2d 10 256

2 IAFSqueeze 256 256

3 AvgPool2d 256 256

4 Conv2d 256 64

5 IAFSqueeze 64 64

6 AvgPool2d 64 64

7 Flatten − 2688

8 Linear 2688 256

9 IAFSqueeze 256 256

10 Linear 256 4
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Fig. 1. Flowchart of the proposed contactless intelligent fault diagnosis method for rotating machines.
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Fig. 2. The appearance and structure of the rolling bearing test rig.
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specially  designed  SCNN.  In  addition,  we  propose  a  specially
designed SNN-based cross-domain fault diagnosis method to achieve
cross-domain  fault  diagnosis  for  rotating  machines  without  faulty
data  from  the  target  domain.  Finally,  the  method  is  verified  on  the
rolling bearing test rig. Compared with the current mainstream CNN-
based  fault  diagnosis  methods,  the  method  in  this  letter  has  strong
competitiveness, and proposes a very effective direction for contact-
less vision-based fault diagnosis.
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Table 2.  Comparison of the Accuracies of Different Methods
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TCNN 96.72% 95.78% 95.46% 95.99% 96.72%

CNN 82.96% 83.43% 84.21% 83.53% 84.21%
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Fig. 3. The trend of testing accuracy with the number of epochs.
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Fig. 4. The tSNE dimensionality  reduction visualization diagram of  different
experimental results.
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Fig. 5. Comparison of ground truths and model prediction.
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