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Low-latency automotive vision with event 
cameras

Daniel Gehrig1 ✉ & Davide Scaramuzza1 ✉

The computer vision algorithms used currently in advanced driver assistance systems 
rely on image-based RGB cameras, leading to a critical bandwidth–latency trade-off 
for delivering safe driving experiences. To address this, event cameras have emerged 
as alternative vision sensors. Event cameras measure the changes in intensity 
asynchronously, offering high temporal resolution and sparsity, markedly reducing 
bandwidth and latency requirements1. Despite these advantages, event-camera-based 
algorithms are either highly efficient but lag behind image-based ones in terms of 
accuracy or sacrifice the sparsity and efficiency of events to achieve comparable 
results. To overcome this, here we propose a hybrid event- and frame-based object 
detector that preserves the advantages of each modality and thus does not suffer 
from this trade-off. Our method exploits the high temporal resolution and sparsity  
of events and the rich but low temporal resolution information in standard images  
to generate efficient, high-rate object detections, reducing perceptual and 
computational latency. We show that the use of a 20 frames per second (fps) RGB 
camera plus an event camera can achieve the same latency as a 5,000-fps camera with 
the bandwidth of a 45-fps camera without compromising accuracy. Our approach 
paves the way for efficient and robust perception in edge-case scenarios by 
uncovering the potential of event cameras2.

Frame-based sensors such as RGB cameras face a bandwidth–latency 
trade-off: higher frame rates reduce perceptual latency but increase 
bandwidth demands, whereas lower frame rates save bandwidth at 
the cost of missing vital scene dynamics due to increased perceptual 
latency3 (Fig. 1a). Perceptual latency measures the time between the 
onset of a visual stimulus and its readout on the sensor.

This trade-off is notable in automotive safety, in which reaction times 
are important. Advanced driver assistance systems record at 30–45 
frames per second (fps) (refs. 4–9), leading to blind times of 22–33 ms. 
These blind times can be crucial in high-speed scenarios, such as detect-
ing a fast-moving pedestrian or vehicle or a lost cargo. Moreover, when 
high uncertainties are present, for example, when traffic participants 
are partially occluded or poorly lit because of adverse weather condi-
tions, these frame rates artificially prolong decision-making for up to 
0.1–0.5 s (refs. 10–14). During this time, a suddenly appearing pedes-
trian (Fig. 1b) running at 12 kph would travel 0.3–1.7 m, whereas a car 
driving at 50 kph would travel 1.4–6.9 m.

Reducing this blind time is vital for safety. To address this, the indus-
try is moving towards higher frame rate sensors, substantially increas-
ing the data volume5. Current driverless cars collect up to 11 terabytes of 
data per hour, a number that is expected to rise to 40 terabytes (ref. 15). 
Although cloud computing offers some solutions, it introduces high 
network latency.

A promising alternative are event cameras, which capture per-pixel 
changes in intensity instead of fixed interval frames1. They offer low 
motion blur, a high dynamic range, spatio-temporal sparsity and 
a microsecond-level resolution with lower bandwidth and power 

usage16,17. They adapt to scene dynamics, providing low-latency and 
low-bandwidth advantages. However, the accuracy of event-based 
methods is currently limited by the inability of the sensors to capture 
slowly varying signals18–20 and the inefficiency of processing methods 
that convert events to frame-like representations for analysis with 
convolutional neural networks (CNNs)19,21–29. This leads to redundant 
computation, higher power consumption and higher computational 
latency. Computational latency measures the time since a measurement 
was read out until producing an output.

We propose a new hybrid event- and frame-based object detector that 
combines a standard CNN for images and an efficient asynchronous 
graph neural network (GNN) for events (Fig. 2). The GNN processes 
events in a recursive fashion, which minimizes redundant computa-
tion and leverages key architectural innovations such as specialized 
convolutional layers, targeted skipping of events and a specialized 
directed event graph structure to enhance computational efficiency.

Our method leverages the advantages of event- and frame-based 
sensors, leveraging the rich context information in images and sparse 
and high-rate event information from events for efficient, high-rate 
object detections with reduced perceptual latency. In an automo-
tive setting, it covers the blind time intervals of image-based sensors  
while keeping a low bandwidth. In doing so, it provides additional cer-
tifiable snapshots of reality that show objects before they become  
visible in the next image (Fig. 1c) or captures object movements that 
encode the intent or trajectory of traffic participants.

Our findings show that pairing a 20-fps RGB camera with an event 
camera can match the latency of a 5,000-fps camera but with the 
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bandwidth of a 45-fps camera, enhancing mean average precision (mAP) 
significantly (Fig. 4c). This approach harnesses the untapped potential 
of event cameras for efficient, accurate and fast object detection in 
edge-case scenarios.

System overview
Our system, which we term deep asynchronous GNN (DAGr), is shown 
in Fig. 2. For a detailed visualization of each network component, see 
Extended Data Fig. 1, and for a visual explanation, see Supplementary 
Video 1. It combines a CNN30, for image processing, with an asynchro-
nous GNN31,32, for processing of the events. These processing steps 
result in object detections with a high temporal resolution and a low 
latency (Fig. 2, green rectangles, bottom timeline).

We next discuss how events and images are combined. Each time 
an image arrives, the CNN processes it and shares the features with 
the asynchronous GNN in a unidirectional way, that is, the CNN fea-
tures are shared with the GNN but not vice versa. The GNN thus lever-
ages image features to boost its performance, especially when only 
a few events are triggered, as is common in static or slow-motion  
scenarios.

The asynchronous GNN constructs spatio-temporal graphs from 
events, following an efficient CUDA implementation inspired by ref. 32, 
and processes this graph together with features obtained from images 
(through skip connections) through a sequence of convolution and 
pooling layers. To facilitate both deep and efficient network training, 
we use graph residual layers30 (Extended Data Fig. 1c). Moreover, we 
design a specialized voxel grid max pooling layer33 (Extended Data 
Fig. 1d) that reduces the number of nodes in early layers and thus limits 
computation in lower layers. We mirror the detection head and training 
strategy of YOLOX34, although we replace the standard convolution 
layers with graph convolution layers (Extended Data Fig. 1e). Finally, 
we design an efficient variant of the spline convolution layer35 as a core 
building block. This layer pre-computes lookup tables and thus saves 
computation compared with the original layer in ref. 35.

To enhance efficiency, we follow the steps proposed in refs. 31,32,36 
to convert the GNN to an asynchronous model. We first train the net-
work on batches of events and images using the training strategy in 
ref. 34 and then convert the trained model into an asynchronous model 
by formulating recursive update rules. In particular, given an image I0 

and events E  up to the next frame (50 ms later), we train the model to 
detect objects in the next frame.

The asynchronous model has the identical weights of the trained 
model but uses recursive update rules (Extended Data Fig. 2) to process 
events individually and produces an identical output. At each layer, 
it retains a memory of its previous graph structure and activation, 
which it updates for each new event. These updates are highly localized 
and thus reduce the overall computation by a large margin, as shown 
in refs. 31,32,36. To maximize the computation savings through this 
method, we adopt three main strategies. First, we limit the computa-
tion in each layer to single messages that are sent between nodes that 
had their feature or node position changed (Extended Data Fig. 2a), 
and these changes are then relayed to the next layer. Second, we prune 
non-informative updates, which stops the relaying of updates to lower 
layers (Extended Data Fig. 2b). This pruning step happens at max pool-
ing operations, which are executed early in the network and thus maxi-
mize the potential of pruning. Finally, we use directed and undirected 
event graphs (Extended Data Fig. 2c). Directed event graphs connect 
only nodes if they are temporally ordered, which stifles update propa-
gation and leads to further efficiency gains.

We report ablation studies on each component of our method in 
the Methods. Here we report comparisons of our system with state- 
of-the-art event- and frame-based object detectors both in terms of 
efficiency and accuracy. First, we show the performance of the asyn-
chronous GNN when processing events alone before showing results 
with images and events. Then, we compare the ability of our method to 
detect objects in the blind time between consecutive frames. We find 
that our method balances achieving high performance—exceeding 
both image- and event-based detectors by using images—and remain-
ing efficient, more so than existing methods that process events as 
dense frames.

Using only events
We compare the GNN in our method with state-of-the-art dense and 
asynchronous event-based methods and report results in Fig. 3a,b. 
For a full table of results, see Extended Data Table 1. We enumerate 
the methods in the Methods. The metrics we report are the mAP, the 
average number of floating point operations (FLOPS) for each newly 
inserted event, and the average power consumption for computation. 
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Fig. 1 | Bandwidth–latency trade-off. a, Unlike frame-based sensors, event 
cameras do not suffer from the bandwidth–latency trade-off: high-speed 
cameras (top left) capture low-latency but high-bandwidth data, whereas 
low-speed cameras (bottom right) capture low-bandwidth but high-latency 
data. Instead, our 20 fps camera plus event camera hybrid setup (bottom left, 
red and blue dots in the yellow rectangle indicate event camera measurements) 
can capture low-latency and low-bandwidth data. This is equivalent in latency 
to a 5,000-fps camera and in bandwidth to a 45-fps camera. b, Application 

scenario. We leverage this setup for low-latency, low-bandwidth traffic 
participant detection (bottom row, green rectangles are detections) that 
enhances the safety of downstream systems compared with standard cameras 
(top and middle rows). c, 3D visualization of detections. To do so, our method 
uses events (red and blue dots) in the blind time between images to detect 
objects (green rectangle), before they become visible in the next image  
(red rectangle).
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To measure the power, we count the number of multiply accumulate 
operations (MACs) and multiply it by 1.69 pJ (ref. 37). We evaluate four 
versions of our model: nano (N), small (S), medium (M) and large (L). 
These differ in the number of features in the layer blocks 3, 4 and 5 and 
in the detection heads and have 32, 64, 92 and 128 channels in these 
layers, respectively. 

According to Fig. 3, recurrent dense methods RED and ASTM-Net 
outperform our large model by 7.9 mAP and 14.6 mAP, respectively, but 
use more computation (4,712 compared with 1.36 for our nano-model). 
We believe that deeper networks and recurrence are two main factors 
that help performance in their methods. By contrast, our large model 
with 32.1 mAP outperforms the recurrent method MatrixLSTM (ref. 29) 
by 1.1 mAP and 120 times fewer FLOPS, and outperforms feedforward 
methods Events + RRC (ref. 38) (30.7 mAP), Inception + SSD (ref. 26) 
(30.1 mAP) and Events + YOLOv3 (ref. 27) (31.2 mAP). When compared 
with the spiking network Spiking DenseNet39, we find that our method 
has a 13.1 point higher mAP. The low performance of the SNN is expected 
to increase as better learning strategies become available to the com-
munity. We find that our small-model outperforms all sparse methods 
in terms of computation, with around 13% times fewer million float-
ing point operations (MFLOPS) per event than the runner-up AEGNN 
(ref. 31). It also achieves a 14.1-mAP higher performance than AEGNN. 
Our smallest network, nano, is 3.8 times more efficient while still out-
performing AEGNN by 10 mAP. In terms of power consumption, our 
smallest model requires only 1.93 μJ per event, which is the lowest for 
all methods.

On the N-Caltech101 dataset, our small model outperforms the 
state-of-the-art dense and sparse methods, achieving 70.2 mAP, which 
is 5.9 mAP higher than the runner-up AsyNet (ref. 36) and uses less 
computation than the state-of-the-art AEGNN (ref. 31). Our large model 
achieves the highest score with 73.2 mAP. Our nano-model achieves the 

lowest computation of 2.28 MFLOPS per event, 3.25 times lower than 
AEGNN, with a 3.4% higher mAP.

Using images and events
We evaluate the ability of our method to fuse images and events by 
validating its performance on our self-collected DSEC-Detection data-
set. Details on the dataset and collection can be found in the Methods 
and ref. 40. Instructions on how to download the DSEC-Detection and 
visualize it can be found at https://github.com/uzh-rpg/dsec-det. We 
report the performance of our method and state-of-the-art event- and 
frame-based methods after seeing one image, and 50 ms of events after 
that image. We also report the computation in MFLOPS per inserted 
event in Fig. 3c. The results are computed over the DSEC-Detection 
test set. For a full table of results, including the power consumption 
per event in terms of μJ, see Extended Data Table 1.

We see that our baseline method with the ResNet-18 backbone 
reaches a 9.1 point higher mAP than the Inception + SSD (18.4 mAP) and 
Events + YOLOv3 (28.7 mAP) methods. We argue that this discrepancy 
comes from the better detection head as observed in ref. 34 and the sub-
optimal way of stacking events into event histograms27. Events + YOLOX 
outperforms our method, which is compared on the same ResNet-18 
backbone (37.6 mAP for our method compared with 40.2 mAP for 
Events + YOLOX). This difference may come from the bidirectional 
feature sharing between event and frame features in Events + YOLOX, 
which is absent in our method. Finally, using a larger ResNet-50 back-
bone boosts our performance to 41.9 mAP. In terms of computational 
complexity, our method outperforms all methods, using only roughly 
0.03% of the computation of the runner-up Events + YOLOX. The 
computational complexity is only weakly affected by the CNN back-
bone, decreasing as the capacity of the CNN backbone is increased.  

High-rate event
processing

Low-rate
image

processing

Directed and sparse feature sharing

CNN ……

Low per-event computation

Time (s)

Activations
updated
sparsely  

Detections at high temporal resolutionetections at high temporal resolution

… …

Events

GNN… CNN

Fig. 2 | Overview of the proposed method. Our method processes dense 
images and asynchronous events (blue and red dots, top timeline) to produce 
high-rate object detections (green rectangles, bottom timeline). It shares 
features from a dense CNN running on low-rate images (blue arrows) to boost the 

performance of an asynchronous GNN running on events. The GNN processes 
each new event efficiently, reusing CNN features and sparsely updating GNN 
activations from previous steps.

https://github.com/uzh-rpg/dsec-det
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This indicates that event features are increasingly filtered as the image 
features become more important. Again, in terms of power consump-
tion, our method outperforms all others by using only 5.42 μJ per event. 
Adopting directed edges (marked with dagger symbol) reduces the 
computation of our method with ResNet-50 backbone by 91% while 
incurring only an mAP reduction of 2%.

Inter-frame detection performance
We report the detection performance of our method for different 
temporal offsets from the image tΔi

n  with n = 10 and i = 0, …, 10 and 
Δt = tE − tI = 50 ms and evaluate on interpolated ground truth, 
described in the Methods. Here, tI denotes the frame time, and the 
start time of the event window inserted into the GNN, and tE denotes 
the end time of the event window. Note the ground truth here is lim-
ited to a subset for which no appearing or disappearing objects are 
present. We thus evaluate the ability of the method to measure both 
linear (between the interval) and nonlinear motions (at t = 50 ms), as 
well as complex object deformations. These arise especially in mod-
elling pedestrians, which are frequently subject to sudden, complex 
and reflexive motion and have deformable appearances such as when 

they stretch their arms, stumble or fall. We plot the detection perfor-
mance for different temporal offsets in Fig. 4a, with and without 
events (cyan and yellow, respectively), and for the Events + YOLOX 
baseline (blue). For the image baseline, we also test with a constant 
and linear extrapolation model (yellow and brown). Whereas with 
the constant extrapolation model we keep object positions constant 
over time, for the linear model we perform a matching step with pre-
vious detections and then propagate the objects linearly into the 
future. More details on the linear extrapolation technique are given 
in the Methods. We also provide further results with different back-
bones in the Methods.

Our event- and image-based method (cyan) shows a slight perfor-
mance increase throughout the 50-ms period, ending with a 0.7 mAP 
higher score after 50 ms. This is probably because of the addition of 
events, that is, more information becomes available. The subsequent 
slight decrease is probably because of the image information becoming 
more outdated. Events + YOLOX starts at a lower mAP of 34.7 before 
rising to 42.5 and settling at 42.2 at 50 ms. Notably, Events + YOLOX 
has an 8.8 mAP lower performance than our method at t = 0 and is 
less stable overall, gaining up to 7.5 mAP between 0 ms and 50 ms. 
Although all methods were trained with a fixed time window of 50 ms, 
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our method can more stably generalize to different time windows, 
whereas Events + YOLOX overfits to time windows close to 50 ms.

By contrast, the purely image-based method (yellow) with constant 
extrapolation degrades by 10.8 mAP after 50 ms. With linear extrap-
olation, this degradation is reduced to 6.4 mAP. This highlights the 
importance of using events as an extra information source to update 
predictions and provide certifiable snapshots of reality. Qualitative 
comparisons in Fig. 5 support the importance of events. In the first 
image (first column), some cars or pedestrians are not visible either 
because of image degradation (rows 1–3) or because they are outside 
the field of view (rows 4 and 5). Events from an event camera (second 
column) make objects that are poorly lit (rows 1–3) or just entering the 
field of view (rows 4 and 5) visible. In the second frame (third column), 
objects become visible in the next frame (rows 2–5); however, in sce-
narios such as in rows 4 and 5, the car has already undergone substan-
tial movement, which may indicate a safety hazard in the immediate 
future. Using the events in Fig. 5 (second column) can provide valuable 
additional time to plan and increase safety. Moreover, we conclude 
from the results at time t = 50 ms that events improve object detec-
tion for nonlinearly moving or deformable objects over image-based 
approaches, even when considering linear extrapolation.

It is also crucial to put the increase in mAP into the context of the 
application. The mAP measures a weighted average of precisions at each 
detection threshold. At each threshold, the weight corresponds to the 
increase in recall from the previous threshold. The mAP is thus maxi-
mized if a method retains a high precision while the precision-recall 
curve undergoes a steep increase. We observe that using an event 
camera mostly aids in increasing the recall slope. The recall slope is 
increased because the addition of an event camera improves object 
localization between the frames. This improvement in localization 
entails a higher intersection over union and thus reduces false negatives 
at high thresholds. Reducing false negatives contributes to increased 
recall.

Bandwidth–performance trade-off
The previous results show that low-frame-rate cameras yield lower mAP 
after the end of the frame interval. We characterize this mAP for differ-
ent frame-rate sensors in Fig. 4a (grey lines). For the full list of compared 
automotive cameras, see Extended Data Table 2. Although a frame 
rate of 120 fps (ref. 6) leads to only a 0.7-mAP drop, 30 fps (refs. 4,9) 
leads to a 6.9-mAP drop. We plot this drop over the required bandwidth 

First image I0 Detections between frames Second image I1 

Fig. 5 | Qualitative results of the proposed detector for edge-case scenarios. 
The first column shows detections for the first image I0. The second column 
shows detections between images I0 and I1 using events. The third column 

shows detections for the second image I1. Detections of cars are shown by green 
rectangles, and of pedestrians by blue rectangles.
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(Fig. 4b) in Fig. 4c and also show our setup for comparison. The band-
width was computed for an automotive-grade VGA RGB camera with 
a 12-bit depth (ref. 40) at different frame rates (see Extended Data  
Table 2 for a summary).

For each image sensor, we compute the minimum and average mAP 
within the range from t = 0 to t = ∆T seconds, where ∆T is the inter- 
frame interval corresponding with the worst-case and average per-
formance. Note that the worst-case mAP indicates robustness in 
safety-critical situations. Our method outperforms YOLOX running 
with lower-frame-rate cameras in terms of accuracy while outperform-
ing the high-frame-rate (120 fps) camera-based method in terms of 
both accuracy and bandwidth. Regarding worst-case and average 
mAP, our method outperforms YOLOX running on all different cam-
eras. In particular, our method outperforms YOLOX running with 
the 45-fps MPC3 camera from Bosch7 by 2.6 mAP, while requiring 
only 4% more data (64.9 Mb s−1 compared with 62.3 Mb s−1). It out-
performs the 120 fps Sony IMX224 (ref. 6) by 0.2 mAP while requiring 
only 41% of the bandwidth. This finding shows that the combina-
tion of a 20-fps RGB camera with an event camera features a 0.2-ms 
perceptual latency, on par with that of a 5,000-fps RGB camera, but 
with only 4% more data bandwidth than a 45-fps automotive sensor 
(Fig. 4b). Figure 4a,c implies that this sensor combination does not 
incur a performance loss compared with high-speed standard cameras 
and can increase the worst-case performance by up to 2.6% over the  
45-fps camera.

Discussion
Leveraging the low latency and robustness of event cameras in the auto-
motive sector requires a carefully designed algorithm that considers 
the different data structures of events and frames. We have presented 
DAGr, a highly efficient object detector that shows several advantages 
over state-of-the-art event- and image-based object detectors. First, 
it uses a highly efficient asynchronous GNN, which processes events 
as a streaming data structure instead of a dense one26,27,34 and is thus 
four orders of magnitude more efficient. Second, it innovates on the 
architecture building blocks to scale the depth of the network while 
remaining more efficient than competing asynchronous methods31,32. 
As a result of a deeper network, our method can achieve higher accuracy 
compared with all other sparse methods. Finally, in combination with 
images, our method can effectively detect objects in the blind time 
between frames and maintain a high detection performance through-
out this blind time, unlike competing baseline methods. Moreover, it 
can achieve this while remaining highly efficient, unlike other compared 
fusion methods that need to reprocess data several times26,27,34 leading 
to wasteful computation.

Combining this approach with additional sensors such as LiDAR (light 
detection and ranging) sensors can present a promising future research 
direction. LiDARs, for example, can provide strong priors, which may 
increase the performance of our approach and reduce complexity if 
shallower networks are used.

Finally, although the current approach promises four orders of 
magnitude efficiency improvements over the state-of-the-art event- 
and image-based approaches, this does not yet translate to the same 
time efficiency gains. The current work improves the runtime perfor-
mance of the algorithm by 3.7 over dense methods, but further runtime 
reductions must come from a suitable implementation on potentially 
spiking hardware accelerators.

Notwithstanding the remaining limitations and future work, demon-
strating several orders of magnitude efficiency gains compared with 
traditional event- and image-based methods and leveraging images for 
robust and low-bandwidth, low-latency object detection represents a 
milestone in computer vision and machine intelligence. These results 
pave the way to efficient and accurate object detection in edge-case 
scenarios.
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Methods

In the first step, we will give a general overview of our hybrid neural 
network architecture, together with the processing model to generate 
high-rate object detections (see section ‘Network overview’). Then we 
will provide more details about the asynchronous GNN (see section 
‘Deep asynchronous GNN’) and will discuss the new network blocks 
that simultaneously push the performance and efficiency of our GNN. 
Finally, we will describe how our model is used in an asynchronous, 
event-based processing mode (see section ‘Asynchronous operation’).

Network overview
An overview of the network is shown in Extended Data Fig. 1. Our 
method processes dense images and sparse events (red and blue dots, 
top left) with a hybrid neural network. A CNN branch FI processes each 
new image I ∈ H W× ×3R  at time tI, producing detection outputs ID  and 
intermediate features g= { }I

l
I

l

L

=1
G  (blue arrows), where l is the layer 

index. The GNN branch FE then takes image-based detection outputs, 
image features and event graphs constructed from raw events 
E ∣e t t t= { < < }i I i E  with tI < tE and events ei, as input to generate detections 
for each time tE. In summary, the detections at time tE are computed as

D G F I, = ( ) (1)I I
I

F= ( , , ), (2)E
E

I ID D G E

In normal operation, equation (1) is executed each time a new image 
arrives and essentially generates feature banks D I  and G I  that are then 
reused in equation (2). As will be seen later, FE, being an asynchronous 
GNN, can be first trained on full event graphs, and then deployed to 
consume individual events in an incremental fashion, with low com-
putational complexity and identical output to the batched form. As a 
result, the above equations describe a high-rate object detector that 
updates its detections for each new event. In the next section, we will 
have a closer look at our new GNN, before delving into the full hybrid 
architecture.

Deep asynchronous GNN
Here we propose a new, highly efficient GNN, which we term, deep asyn-
chronous GNN (DAGr). It processes events as spatio-temporal graphs. 
However, before we can describe it, we first give some preliminaries 
on how events are converted into graphs.

Graph construction. Event cameras have independent pixels that 
respond asynchronously to changes in logarithmic brightness L. When-
ever the magnitude of this change exceeds the contrast threshold C, 
that pixel triggers an event ei = (xi, ti, pi) characterized by the position xi, 
timestamp ti with microsecond resolution and polarity (sign) pi ∈ {−1, 1} 
of the change. An event is triggered when

p t t t C[ ( , ) − ( , − Δ )] > . (3)i i i i i iL x L x

The event camera thus outputs a sparse stream of events E e= { }i i
N
=0

−1. 
As in refs. 31,32,43–45, we interpret events as three-dimensional (3D) 
points, connected by spatio-temporal edges.

From these points, we construct the event graph G V E= { , } consist
ing of nodes V and edges E. Each event ei corresponds to a node. These 
nodes Vn ∈i  are characterized by their position βt= ( , ) ∈i

i ip
3Rn x̂  and 

node features Rp= ∈i
ifn . Here x̂i is the event pixel coordinate, normal-

ized by the height and width, and ti and pi are taken from the correspond-
ing event. To map ti into the same range as xi, we rescale it by a factor 
of β = 10−6. These nodes are connected by edges, (i, j) ∈ E, connecting 
nodes ni and nj, each with edge attributes Re ∈ij

de. We connect nodes 
that are temporally ordered and within a spatio-temporal distance 
from each other:

n ni j E R t t( , ) ∈ if − < and < . (4)i j
i jp p ∞∥ ∥

Here ∥ · ∥∞ returns the absolute value of the largest component. For 
each edge, we associate edge features n ne r= ( − )/2 + 1/2ij xy

j
xy
i . Here,  

nxy denote the x and y components of each node, and r is a constant, 
such that eij ∈ [0, 1]2. Constructing the graph in this way gives us several 
advantages. First, we can leverage the queue-based graph construction 
method in ref. 32 to implement a highly parallel graph construction 
algorithm on GPU. Our implementation constructs full event graphs 
with 50,000 nodes in 1.75 ms and inserts single events in 0.3 ms on a 
Quadro RTX 4000 laptop GPU. Second, the temporal ordering con-
straint above makes the event graph directed32,45, which will enable 
high efficiency in early layers before pooling (see section ‘Asynchronous 
operation’). In this work, we select R = 0.01 and limit the number of 
neighbours of each node to 16.

Deep asynchronous GNN. In this section, we describe the function FE 
in equation (2). For simplicity, we first describe it without the fusion 
terms D I  and G I  and describe only how processing is performed on 
events alone. We later give a complete description, incorporating  
fusion.

An overview of our neural network architecture is shown in Extended 
Data Fig. 1. It processes the spatio-temporal graphs from the previ-
ous section and outputs object detection at multiple scales (top 
right). It consists of five alternating residual layers (Extended Data 
Fig. 1c) and max pooling blocks (Extended Data Fig. 1d), followed by a 
YOLOX-inspired detection head at two scales (Extended Data Fig. 1e). 
Crucially, our network has a total of 13 convolution layers. By contrast, 
the methods in ref. 32 and ref. 31 feature only five and seven layers, 
respectively, making our network almost twice as deep as the previous 
methods. Before each residual layer, we concatenate the x and y coor-
dinates of the node position onto the node feature, which is indicated 
by +2 at the residual layer input. Residual layers and the detection head 
use the lookup table-based spline convolutions (LUT-SCs) as the basic 
building block (Extended Data Fig. 1f). These LUT-SCs are trained as 
a standard spline convolution31,35 and later deployed as an efficient 
lookup table (see section ‘Asynchronous operation’).
Spline convolutions. Spline convolutions, shown in Extended Data 
Fig. 1f, update the node features by aggregating messages from neigh-
bouring nodes:

∑W W e′ = + ( ) , and ′ = . (5)
i i

j i E
ij

j i i
f f

( , )∈
f p pn n n n n

Here n′i
f  is the updated feature at node Rn W, ∈i

c c×out in is a matrix that 
maps the current node feature ni

f to the output, and W e( ) ∈ij
c c×out inR  is 

a matrix that maps neighbouring node features n j
f  to the output. In 

ref. 35, W(eij) is a matrix-valued smooth function of the edge feature eij. 
Remember that the edge features eij ∈ [0, 1]2, which is the domain of 
W(eij). The function W(eij) is modelled by a d-order B-spline in m = 2 
dimensions with k × k learnable weight matrices equally spaced in [0, 1]2. 
During the evaluation, the function interpolates between these learn-
able weights according to the value of eij. In this work, we choose d = 1 
and k = 5.
Max pooling. Max pooling, shown in Extended Data Fig. 1d, splits the 
input space into gx × gy × gt voxels V and clusters nodes in the same 
voxel. At the output, each non-empty voxel has a node, located at the 
rounded mean of the input node positions and with its feature equal 
to the maximum of the input nodes features.


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resolution. To compute the new edges, it forms a union of all edges 
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connecting the cluster centres and removes duplicates. Formally, the 
edge set of the output graph after pooling, E ′pool, is computed as

∣E e e E′ = { ∈ }. (7)c c ijpool i j

Here ci retrieves the index of the voxel in which the node ni resides, 
and duplicates are removed from the set. This operation can result in 
bidirectional edges between output nodes if at least one node from 
voxel A is connected to one of voxel B and vice versa. The combination of 
max pooling and position rounding has two main benefits: first, it allows 
the implementation of highly efficient LUT-SC, and second, it enables 
update pruning, which further reduces computation, discussed in the 
section ‘Events only’ under ‘Ablations’. For our pooling layers, we select 
(gx, gy, gt)i = (56/2i, 40/2i, 1), where i is the index of the pooling layer. As 
seen in this section, selecting  gt = 1 is crucial to obtain high performance 
because it accelerates the information mixing in the network.
Directed voxel grid pooling. As previously mentioned, the constructed 
event graph has a temporal ordering, which means that the edges pass 
only from older to newer nodes. Although this property is conserved 
in the first few layers of the GNN, after pooling it is lost to a certain 
extent. This is because edge pooling, described in equation (7), has the 
potential to generate bidirectional edges (Extended Data Fig. 2d, top). 
Bidirectional edges are formed when there is at least one edge going 
from voxel A to voxel B, and one edge going from voxel B to voxel A, such 
that pooling merges them into one bidirectional edge between A and 
B. Although bidirectional edges facilitate the distribution of messages 
throughout the network and thus boost accuracy, they also increase 
computation during asynchronous operation significantly. This is 
because bidirectional edges grow the k-hop subgraph that needs to 
be recomputed at each layer. In this work, we introduce a specialized 
directed voxel pooling, which instead curbs this growth, by eliminat-
ing bidirectional edges from the output, thus creating temporally 
ordered graphs at all layers. It does this, by redefining the pooling 
operations. Although feature pooling is the same, position pooling  
becomes

n n n n
n n

∑α
α
V

′ = max and ′ =
1

| |
. (8)t

i

V
t xy

i

i V
xy

∈ ∈i i




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





Here we pool the coordinates x and y using mean pooling and 
timestamps t with max pooling. We then redefine the edge pooling  
operation as

n n∣E e e E′ = { ∈ and > }, (9)c c ij t
c

t
c

dpool i j

j i

where we now impose that edges between output nodes can exist only 
if the timestamp of the source node is smaller than that of the destina-
tion node. This condition essentially acts as a filter on the total number 
of pooled edges. As will be discussed later, this pooling layer increases 
the efficiency, while also affecting the performance. However, we show 
that when combined with images (see section ‘Images and events’), this 
pooling layer can manifest both high accuracy and efficiency.
Detection head. Inspired by the YOLOX detection head, we design a 
series of (LUT-SC, BN and ReLU) blocks that progressively compute a 
bounding box regression R∈reg

4f , class score ∈ n
cls

clsf R  and object 
score f ∈obj R for each output node. We then decode the bounding box 
location as in ref. 34 but relative to the voxel location in which the node 
resides. This results in a sparse set of output detections.

Now that all components of the GNN are discussed, we will introduce 
the fusion strategy that combines the CNN and GNN outputs.

CNN branch and fusion
The CNN branch FI (Extended Data Fig. 1) is implemented as a classical 
CNN, here ResNet30, pretrained on ImageNet46, whereas the GNN has 
the architecture from the section ‘Deep asynchronous GNN’.

To generate the image features G I  used by the GNN, we process the 
features after each ResBlock with a depthwise convolution. To gener-
ate the detection output, we also apply a depthwise convolution to the 
last two scales of the output before using a standard YOLOX detection 
head34. We fuse features from the CNN with those from the GNN with 
sparse directed feature sampling and detection adding.

Feature sampling. Our GNN makes use of the intermediate image 
feature maps IG  using a feature sampling layer (Extended Data Fig. 1b), 
which, for each graph node, samples the image feature at that layer at 
the corresponding node position and concatenates it with the node 
feature. In summary, at each GNN layer, we update the node features 
with features derived from IG  by taking into account the spatial location 
of nodes in the image plane:

̂ ng g= ( ) (10)l
i

l
I i

p





̂ ̂ ∥n ng= , (11)i

l
i i

f f

where ̂ifn  is the updated node feature of node ni. Equation (10) samples 
image features at each event node location and equation (11) concat-
enates these features with the existing node features. Note that equa-
tions (10) and (11) can be done in an event-by-event fashion.

Detection adding. Finally, we add the outputs of the corresponding 
detection heads of the two branches. We do this before the decoding 
step34, which applies an exponential map to the regression outputs 
and sigmoid to the objectness scores. As the outputs of the GNN-based 
and CNN-based detection heads are sparse and dense, respectively, 
care must be taken when adding them together. We thus initialize the 
detections at tE with ID  and then add the detection outputs of the GNN 
to the pixels corresponding to the graph nodes. This operation is  
also compatible with event-by-event updating of the GNN-based  
detections.

Detection adding is an essential step to overcome the limitations of 
event-based object detection in static conditions, because then the 
RGB-based detector can provide an initial guess even when no events 
are present. It also guarantees that in the absence of events, the per-
formance of the method is lower bounded by the performance of the 
image-based detector.

Training procedure. Our hybrid method consists of two coupled object 
detectors that generate detection outputs at two different timestamps: 
one at the timestamp of the image tI and the other after observing events 
until time tE (Extended Data Fig. 1). As our labels are collocated with 
the image frames, this enables us to define a loss in both instances. We 
found that the following training strategy produced the best results: 
pretraining the image branch with the image labels first, then freezing 
the weights and training the depthwise convolutions and DAGr branch 
separately on the event labels.

As both branches are trained to predict detections separately, the 
DAGr network essentially learns to update the detections made by the 
image branch. This means that DAGr learns to track, detect and forget 
objects from the previous view.

Asynchronous operation
As in refs. 31,32,36, after training, we deploy our hybrid neural net-
work in an asynchronous mode, in which instead of feeding full event 
graphs, we input only individual events. Local recursive update rules are 
formulated at each layer that enforces that the output of the network 
for each new event is identical to that of the augmented graph that 
includes the old graph and the new event. As seen in refs. 31,32,36, the 
rules update only a fraction of the activations at each layer, leading to a 
drastic reduction in computation compared with a dense forward pass. 



In this section, we will describe the steps that are taken after training 
to perform asynchronous processing.

Initialization. The conversion to asynchronous mode happens in three 
steps: (1) precomputing the image features; (2) LUT-SC caching and 
batch norm fusing; and (3) network activation initialization.

As a first step, when we get an image, we precompute the image fea-
tures by running a forward pass through the CNN and applying the 
depthwise convolutions. This results in the image feature banks IG  and 
detections D I.

In the second step (LUT-SC caching), spline convolutions generate 
the highest computational burden in our method because they involve 
evaluating a multivariate, matrix-valued function and performing a 
matrix–vector multiplication. Following the implementation in ref. 35, 
computing a single message between neighbours requires

C d c c c c= (2[ + 1] − 1) + (2 − 1) , (12)m
msg in out in out

floating point operations (FLOPS), in which the first term computes 
the interpolation of the weight matrix and the second computes the 
matrix–vector product. Here the first term dominates because of the 
highly superlinear dependence on d and m. Our LUT-SC eliminates this 
term. We recognize that the edge attributes eij depend only on the rela-
tive spatial node positions. As events are triggered on a grid, and the 
distance between neighbours is bounded, these edge attributes can 
only take on a finite number of possible values. Therefore, instead of 
recomputing the interpolated weight at each step, we can precompute 
all weight matrices once and store them in a lookup table. This table 
stores the relative offsets of nodes together with their weight matrix. 
We thus replace the message propagation equation with

∑W W′ = + (13)
i i

j i E
ij

j
f f
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fn n n

W x y= LUT(d , d ), (14)ij

where dx and dy are the relative two-dimensional (2D) positions of 
nodes i and j. Note that this transformation reduces the complexity of 
our convolution operation to Cmsg = (2cin − 1)cout, which is on the level of 
the classical graph convolution (GC) used in ref. 32. However, crucially, 
LUT-SC still retains the relative spatial awareness of spline convolutions, 
as Wij change with the relative position and is thus more expressive 
than GCs. After caching, we fuse the weights computed above with the 
batch norm layer immediately following each convolution, thereby 
eliminating its computation from the tally. After pooling, ordinarily, 
node positions would not have the property that they lie on a grid any-
more, as their coordinates get set to the centroid location. However, 
because we apply position rounding, we can apply LUT-SC caching in 
all layers of the network.

In the third step (network activation initialization), before asynchro-
nous processing, we pass a dense graph through our network and cache 
the intermediate activations at each layer. Although in convolution 
layers we cache the activation, that is, the results of sums computed 
from equation (13), in max pooling layers we cache (1) the indices of 
input nodes used to compute the output feature for each voxel; (2) a 
list of currently occupied output voxels; and (3) a partial sum of node 
positions and node counts per voxel to efficiently update output node 
positions after pooling.

Update propagation. When a new event is inserted, we compute  
updates to all relevant nodes in all layers of the network. The goal 
of these updates is to achieve an output identical to the output the 
network would have computed if the complete graph with one event 
added was processed from scratch. The updates include (1) adding and 
recomputing messages in equation (13) if a node position or feature has 

changed; (2) recomputing the maximum and node position for output 
nodes after each max pooling layer; and (3) adding and flipping edges 
when new edges are formed at the input. We will discuss these updates 
in the following sections. To facilitate computation, at each layer, we 
maintain a running list of unchanged nodes (grey) and changed nodes 
(cyan) and whether their position has changed, the feature has changed 
or both. The propagation rules are outlined in Extended Data Fig. 2.
Convolution layers. In a convolution layer (Extended Data Fig. 2a), if the 
node has a different position (Extended Data Fig. 2a, top), we recompute 
that feature of the node and resend a message from that node to all its 
neighbours. These are marked as green and orange arrows in Extended 
Data Fig. 2a (top row). If instead, only the feature of the node changed  
(Extended Data Fig. 2a, bottom), we update only the messages sent 
from that node to its neighbours. We can gain an intuition for these 
rules from equation (13). A change in the node feature nf changes only 
one term in the sum that has to be recomputed. Instead, a node posi-
tion change causes all weight matrices Wij to change, resulting in a 
recomputation of the entire sum.
Pooling layers. Pooling layers update only output nodes for which at 
least one input node has a changed feature or changed position. For 
these output nodes, the position and feature are recomputed using 
equation (6). Special care must be taken when using directed voxel 
pooling layers. Sometimes it can happen that an edge at the output of 
this layer needs to be inverted such that temporal ordering is conserved. 
In this case, the next convolution layer must compute two messages 
(Extended Data Fig. 2e), one to undo the first message and the other 
corresponding to the new edge direction. In this case, two nodes are 
changed instead of only one. However, edge inversion happens rarely 
and thus does not contribute markedly to computation.

Reducing computation. In this section, we describe various consid-
erations and algorithms for reducing the computation of the two basic 
layers described above.
Directed event graph. As previously discussed, using a directed event 
graph notably reduces computation, as it reduces the number of nodes 
that need to be updated at each layer. We illustrate this concept in 
Extended Data Fig. 2c, in which we compare update propagation in 
graphs that are directed or possess bidirectional edges. Note that 
we encounter directed graphs either at the input layer (before the 
first pooling) or after directed voxel pooling layers. Instead, graphs 
with bidirectional edges are encountered after regular voxel pooling  
layers. As seen in Extended Data Fig. 2c (top), directed graphs keep the 
number of messages that need to be updated in each layer constant, 
as no additional nodes are updated at any layer. Instead, bidirectional 
edges send new messages to previously untouched nodes, leading 
to a proliferation of update messages, and as a result, computation.
Update pruning. Even when input nodes to a voxel pooling layer change, 
the output position and feature may stay the same, even after recom-
putation. If this is the case, we simply terminate propagation at that 
node, called update pruning, and thus save significantly in terms of 
computation. We show this phenomenon in Extended Data Fig. 2b. 
This can happen when (1) the rounding operation in equation (6)  
simply rounds a slightly updated position to the same position as 
before; and (2) the maximal features at the output belong to input 
nodes that have not been updated. Let us state the second condition 
more formally. Let n′f j

i
,  be the jth entry of the feature vector belonging 

to the ith output node. Now let

n n
n

= arg max (15)
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be the input node for which the feature nf,j at the jth position is maximal. 
The index k j

i  selects this node from the voxel Vi. Thus, we may rewrite 
the equation for max pooling for each component as
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This means that essentially, only a subset of input nodes in the voxel 

contributes to the output, and this subset is exactly

∣P n j c V= { = 0, . . . , − 1} ⊂ . (17)i
k

i
j

i

Moreover, as these nodes are indexed by j, and the k j
i  could repeat, 

we know that the size of this subset satisfies  P∣ ∣ c≤i , where c is the num-
ber of features. We thus find that output features do not change if 
none of the changed inputs nodes to a given output node are within 
the set Pi.

Thus, for each output node, we check the following conditions 
to see if update pruning can be performed. For all input nodes that 
have a changed position or feature, we check if (1) the changed node 
is currently in the set of unused nodes (greyed out in Extended Data 
Fig. 2b); (2) the changed feature of the node does not beat the cur-
rent maximum at any feature index; and (3) its position change did 
not deflect the average output node position sufficiently to change 
rounding. If not all three conditions are met, we recompute the output 
feature for that node, otherwise, we prune the update and skip the 
computation in the lower layers. Skipping happens surprisingly often. 
In our case, we found that 73% of updates are skipped because of this 
mechanism. This also motivated us to place the max pooling layer in 
the early layers, as it has the highest potential to save computation. 
In a later section, we will show the impact these features have on the 
computation of the method.
Simplification of concatenation operation. During feature fusion in the 
hybrid network, owing to the concatenation of node-level features with 
image features (equation (11)), the number of intermediate features 
at the input to each layer of the GNN increases. This would essentially 
increase the computation of these layers. However, we apply a simplifi-
cation, which significantly reduces this additional cost. Note that from 
equation (13) the output of the layer after the concatenation becomes

∥ ∥
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In the equation above, we made use of the fact that weight matrix 
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similar operation could be performed with a pure depthwise convolu-
tion and addition of features, as the weight matrices Wij change for 
each neighbour. During asynchronous operation, the terms on the left 
need to be recomputed when there is a node position change, and the 
terms on the right need to be recomputed when there is a node position 
or node feature change. At most one node experiences a node position 
change in each layer, and thus the terms on the left do not need to be 
recomputed often.

Datasets
Purely event-based datasets. We evaluate our method on the 
N-Caltech101 detection42, and  the Gen1 Detection Dataset41. 
N-Caltech101 consists of recording by a DAVIS240 (ref. 17) undergo-
ing a saccadic motion in front of a projector, projecting samples of 
Caltech101 (ref. 47) on a wall. In post-processing, bounding boxes 
around the visible boxes were hand placed. The Gen1 Detection Data-
set is a more challenging, large-scale dataset targeting an automo-
tive setting. It was recorded with an ATIS sensor48 with a resolution of 
304 × 240, two classes, 228,123 annotated cars and 27,658 annotated 

pedestrians. As in ref. 19, we remove bounding boxes with diagonals 
below 30 and sides below 20 pixels from Gen1.

Event- and image-based dataset. We curate a multimodal dataset 
for object detection by using the DSEC40 dataset, which we term DSEC-
Detection. A preview of the dataset can be seen in Extended Data Fig. 6a.

It features data collected from a stereo pair of Prophesee Gen3 event 
cameras and FLIR Blackfly S global shutter RGB cameras recording at 
20 fps. We select the left event camera and left RGB camera and align 
the RGB images with the distorted event camera frame by infinite depth 
alignment. Essentially, we first undistort the camera image, then rotate 
it into the same orientation as the event camera and then distort the 
image. The resulting image features only a maximal disparity of roughly 
6 pixels for close objects at the edges of the image plane owing to the 
small baseline (4.5 cm). As object detection is not a precise per-pixel 
task, this kind of misalignment is sufficient for sensor fusion.

To create labels, we use the QDTrack49,50 multiobject tracker to anno-
tate the RGB images, followed by a manual inspection and removal of 
false detections and tracks. Using this method, we annotate the official 
training and test sets of DSEC40. Moreover, we label several sequences 
for the validation set and one complex sequence with pedestrians for 
the test set. We do this because the original dataset split was chosen 
to minimize the number of moving objects. However, this excludes 
cluttered scenes with pedestrians and moving cars. By including these 
additional sequences, we thus also address more complex and dynamic 
scenes. A detailed breakdown and comparison of the number of classes, 
instances per class and the number of samples are given in Extended 
Data Fig. 6b. Our dataset is the only one to feature images and events and 
consider semantic classes, to the best of our knowledge. By contrast, 
refs. 19,41 have only events, and ref. 51 considers only moving objects, 
that is, does not provide class information, or omits stationary objects.

Statistics of edge cases. We compute the percentage of edge cases 
for the DSEC-Detection dataset. We will define an edge case as an  
image that contains at least one appearing or disappearing object, 
which presumably would be missed by using a purely image-based 
algorithm. We found that this proportion is 31% of the training set and 
30% of the test set. Moreover, we counted the number of objects that 
suddenly appear or disappear. We found that in the training set, 4.2% 
of objects disappear and 4.2% appear, whereas in the test set, 3.5%  
appear and 3.5% disappear.

Comments on time synchronization. Events and frames were hard-
ware synchronized by an external computer that sent trigger signals 
simultaneously to the image and event sensor. While the image sensor 
would capture an image with a fixed exposure on triggering, the event 
camera would record a special event that exactly marked the time of 
triggering. We assign the timestamp of this event (and half an exposure 
time) to the image. We found that this synchronization accuracy was 
of the order of 78 μs, which we determined by measuring the mean 
squared deviation of the frame timestamps from a nominal 50,000 μs. 
More details can be found in ref. 40.

Comments on network and event transport latencies. As discussed 
earlier, we estimate the mean synchronization error of the order of 
78 μs with hardware synchronization. Moreover, in a real-time system, 
the event camera will experience event transport delays that are split 
into a maximal sensor latency, MIPI to USB transfer latency and a USB 
to computer transfer latency, as discussed in ref. 52. For the Gen3 sen-
sor, the sum of all worst-case latencies can be as low as 6 ms. It can be 
further reduced by using directly an MIPI interface in which case this 
latency reduces to 4 ms. However, this worst-case delay is achieved only 
during static scenarios, in which there is an exceptionally low event rate 
such that MIPI packets are not filled sufficiently. However, this case is 
rarely achieved because of the presence of sensor noise and also does 



not affect dynamic scenarios with high event rates. More details can 
be found in ref. 53. Finally, note that although all three latencies would 
affect a closed-loop system, our work is evaluated in an open loop and 
thus does not experience these latencies, or synchronization errors 
due to these latencies.

In view of integrating our method into a multi-sensor system, which 
uses the network-based time synchronization standard IEEE1588v2, we 
analyse how the method performs when small synchronization errors 
between images and events are present. To test this, we introduce a fixed 
time delay Δtd ∈ [−20, 20] ms between the event and image stream. Note 
that for a given stimulus a delay of Δtd < 0 denotes that events arrive 
earlier than images, whereas Δtd > 0 denotes that events arrive later 
than images. We report the performance of DAGr-S + ResNet-50 on 
the DSEC-Detection test set in Extended Data Fig. 3b. As can be seen, 
our method is robust to synchronization errors up to 20 ms, suffering 
only a maximal performance decrease of 0.5 mAP. Making our method 
more robust to such errors remains the topic of further work.

Comment on event-to-image alignment. Throughout the dataset, 
event-to-image misalignment is small and never exceeds 6 pixels, 
and this is further supported by visual inspection of Extended Data 
Fig. 6a. Nonetheless, we characterize the accuracy that a hypotheti-
cal decision-making system would have if worst-case errors were 
considered. Consider a decision-making system that relies on accu-
rate and low-latency positioning of actors such as cars and pedes-
trians. This system could use the proposed object detector (using 
the small-baseline stereo setup with an event and image camera) as 
well as a state-of-the-art event camera-based stereo depth method54 
(using the wide-baseline stereo event camera setup) to map a con-
servative region around a proposed detection. This system would 
still have a low latency and provide a low depth uncertainty because 
of a low disparity error of 1.2–1.3 pixels, characterized on DSEC  
in ref. 40.

We can calculate the depth uncertainty due to the stereo system  
as σ σ=D

D
fb d
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w
. With a maximal disparity uncertainty σd = 1.3 pixels, the 

depth D at 3 m, the focal length at f = 581 pixels and the event camera 
to event camera baseline at bw = 50 cm. This results in a depth uncer-
tainty of σD = 4 cm. Likewise, the lateral positioning uncertainty (due 
to shifted events) is σ σ=l

D
f d.

For lateral positioning, we can assume a disparity error that is 
bounded by the misalignment between events and frames, which is 
σ <

fb
Dd

s  where bs = 4.5 cm is the small baseline between the event  
and image camera. Inserting this uncertainty, the resulting lateral 
uncertainty is bounded by σ σ b= < =D

f
D
f
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s , which means σp < 4.5 cm. 
These numbers are well within the tolerance limits of automotive sys-
tems that typically expect a 3% of distance to target uncertainty, which 
for 3 m would be 9 cm. Moreover, this lies within the tolerance limit of 
the current agent-forecasting methods10–12 that are currently finding 
their way into commercial patents13, in which we see displacement 
errors in prediction of the order of 0.6 m, more than one order of mag-
nitude higher than the worst-case error of our system.

Finally, we argue that despite the misalignment, our object detector 
learns to implicitly realign events to the image frame because of the 
training setup. As the network is trained with object detection labels 
that are aligned with the image frame, and slightly misaligned events, 
the network learns to implicitly realign the events to compensate for 
the misalignment. As the misalignment is small, this is simple to learn. 
To test this hypothesis, we used the LiDAR scans in DSEC to align the 
object detection labels with the event stream, that is, in the frame it 
was not trained for, and observed a performance drop from 41.87 mAP 
to 41.8 mAP. First, the slight performance drop indicates that we are 
moving the detection labels slightly out of distribution, thus confirm-
ing that the network learns to implicitly apply a correction alignment. 
Second, the small magnitude of the change highlights that the mis-
alignment is small.

Ground truth generation for inter-frame detection. To evaluate our 
method between consecutive frames, we generate ground truth as 
follows. We generate ground truth for multiple temporal offsets tΔi

n  
with n = 10 and i = 0, …, 10 and Δt = tE − tI = 50 ms. We then remove the 
samples from our dataset in which two consecutive images do not share 
the same object tracks and generate inter-frame labels by linearly  
interpolating the position (x and y coordinates of the top left bounding 
box corner) and size (height and width) of each object. We then  
aggregate detection evaluations at the same temporal offset across 
the dataset.

Comment on approximation errors due to linear interpolation. To 
measure the inter-frame detection performance of our method, we use 
linear interpolation between consecutive frames to generate ground 
truth. Although this linear interpolation affects ground truth accuracy 
within the interval because of interpolation errors, at the frame borders, 
that is, t = 0 ms and t = 50 ms, no approximation is made. Still, we verify 
the accuracy of the ground truth by evaluating our method for different 
interpolation methods. We focus on the subset that has object tracks 
that have a length of at least four and then apply cubic and linear inter-
polation of object tracks on the interval between the second and third 
frames. We report the results in Extended Data Fig. 3a. We see that the 
performance of our method deviates at most 0.2 mAP between linear 
and cubic interpolations. Although there is a small difference, we focus 
on using linear interpolation, as it allows us to use a larger subset of the 
test set for inter-frame object detection.

Training details
On Gen1 and N-Caltech101, we use the AdamW optimizer55 with a 
learning rate of 0.01 and weight decay of 10−5. We train each model for 
150,000 iterations with a batch size of 64. We randomly crop the events 
to 75% of the full resolution and randomly translate them by up to 10% 
of the full resolution. We use the YOLOX loss34, which includes an IOU 
loss, class loss and a regression loss, discussed in ref. 34. To stabilize 
training, we also use exponential model averaging56.

On DSEC-Detection, we train with a batch size of 32, the learning rate 
of 2 × 10−4 for 800 epochs using the AdamW optimizer55, as before. 
Apart from the data augmentations described before, we now also use 
random horizontal flipping with a probability of 0.5 and random mag-
nification with a scale s ~ (1, 1.5)U . We train the network to predict with 
one image and 50 ms of events leading up to the next image, corre-
sponding to the frequency of labels (20 Hz).

Baselines
In the purely event-based setting, we compare with the following 
state-of-the-art methods.

Dense recurrent methods. In this category, RED (ref. 19) and ASTM-Net 
(ref. 28) are the state-of-the-art methods, and they feature recurrent 
architectures. We also include MatrixLSTM + YOLOv3 (ref. 29) that 
features a recurrent, learnable representation and a YOLOv3 detec-
tion head.

Dense feedforward methods. Reference 28 provides the results on 
Gen1 for the dense feedforward methods, which we term Events + RRC 
(ref. 38), Inception + SDD (ref. 26) and Events + YOLOv3 (ref. 27). These 
methods use dense event representations with the RRC, SSD or YOLOv3 
detection head.

Spiking methods. We compare with the spiking network Spiking 
DenseNet (ref. 39), which uses an SSD detection head.

Asynchronous methods. Here we compare with the state-of-the-art 
methods AEGNN (ref. 31) and NVS-S (ref. 32), both graph-based, AsyNet 
(ref. 36), which uses submanifold sparse convolutions57, and YOLE 
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(ref. 58), which uses an asynchronous CNN. All of these methods deploy 
their networks in an asynchronous mode during testing.

As implementation details are not available for Events + RRC (ref. 38), 
Inception + SDD (ref. 26) and Events + YOLOv3 (ref. 27), MatrixLSTM +  
YOLOv3 (ref. 29) and ASTM-Net (ref. 28), we find a lower bound on the 
per-event computation necessary to update their network based on the 
complexity of their detection backbone. Whereas for Events + YOLOv3 
and MatrixLSTM + YOLOv3 we use the DarkNet-53 backbone, for 
ASTM-Net and Events + RRC, we use the VGG11 backbone, and for 
Inception + SDD the Inception v.2 backbone. As Spiking DenseNet 
uses spike-based computation, we do not report FLOPS because they 
are undefined and mark that entry with N/A.

Hybrid methods. In the event- and image-based setting, we addition-
ally compare with an event- and frame-based baseline, which we term 
Events + YOLOX. It takes in concatenated images and event histograms59 
from events up to time t and generates detections for time t.

Image-based methods. We compare with YOLOX (ref. 34). As YOLOX 
provides only detections at frame time, we present a variation that can 
provide detections in the blind time between the frames, using either 
constant or linear extrapolation of detections extracted at frame time. 
Whereas for constant extrapolation we simply keep object positions 
constant over time, for linear extrapolation we use detections in the 
past and current frames to fit a linear motion model on the position, 
height and width of the object. As YOLOX is an object detector, we 
need to establish associations between the past and current objects. 
We did this as follows: for each object in the current frame, we selected 
the object of the same class in the previous frame with the highest IOU 
overlap and used it to fit a linear function on the bounding box param-
eters (height, width, x position and y position). If no match was found 
(that is, all IOUs were 0 for the selected object), it was not extrapolated 
but instead kept constant.

Finally, we compare the bandwidth and latency requirements of the 
Prophesee Gen3 camera with those of a set of automotive cameras, 
which are summarized in Extended Data Table 2. We also illustrate the 
concept of bandwidth–latency trade-off in Fig. 1a. The bandwidth–
latency trade-off, discussed in ref. 60, states that cameras such as the 
automotive cameras in Extended Data Table 2 cannot simultaneously 
achieve low bandwidth and low latency because of the reliance of a 
frame rate. By contrast, the Prophesee Gen3 camera can minimize both 
because it is an asynchronous sensor.

Related work
Dense neural network-based methods. Since the introduction of 
powerful object detectors in classical image-based computer vision, 
such as R-CNN (refs. 61–63), SSD (ref. 64) and the YOLO series34,65,66, 
and the widespread adoption of these methods in automotive settings, 
event-based object detection research has focused on leveraging the 
available models on dense, image-like event representations19,26–29,38. 
This approach enables the use of pretraining, and well-established 
architecture designs and loss functions, while maintaining the adv
antages of events, such as their high dynamic range, and negligible 
motion blur. Most recent examples of these methods include RED 
(ref. 19) and ASTM-Net (ref. 28), which operate recurrently on events 
and have shown high performance on detection tasks in automotive set-
tings. However, owing to the nature of their method, these approaches  
necessarily need to convert events into dense frames. This invariably 
sacrifices the efficiency and high temporal resolution present in the 
events, which are important in many application scenarios such as 
low-power, always-on surveillance67,68 and low-latency, low-power  
object detection and avoidance3,69.

Geometric learning methods. As a result, a parallel line of research has 
emerged that tries to reintroduce sparsity into the present models by 

adopting either spiking neural network architectures39 or geometric 
learning approaches31,36. Of these, spiking neural networks are capa-
ble of processing raw events asynchronously and are thus closest in 
spirit to the event-based data. However, these architectures lack effi
cient learning rules and thus do not yet scale to complex tasks and  
datasets42,70–74. Recently, geometric learning approaches have filled  
this gap. These approaches treat events as spatio-temporal point 
clouds75, submanifolds36 or graphs31,32,43,76 and process them with 
specialized neural networks. Particular instances of these meth-
ods that have found use in large-scale point-cloud processing are 
PointNet++ (ref. 77) and Flex-Conv (ref. 78). These methods retain 
the spatio-temporal sparsity in the events and can be implemented  
recursively, in which single-event insertions are highly efficient.

Asynchronous GNNs. Of the geometric learning methods, processing 
events with GNNs is found to be most scalable, achieving high per
formance on complex tasks such as object recognition32,43,44, object 
detection31 and motion segmentation45. Recently, a line of research31,32 
has focused on converting these GNNs, once trained, into asynchro-
nous models. These models can process in an event-by-event fashion 
while maintaining low computational complexity and generating an 
identical output to feedforward GNNs. They do so, by efficiently insert-
ing events into the event graph32, and then propagating the changes to 
lower layers, for which at each layer only a subset of nodes needs to be 
recomputed. However, these works are limited in three main aspects. 
First, they work only at a per node level, meaning that they flag nodes 
that have changed and then recompute the messages to recompute 
the feature of each node. This incurs redundant computation because 
effectively only a subset of messages passing to each changed node 
need to be recomputed. Second, they do not consider update pruning, 
which means that when node features do not change at a layer, they 
simply treat them as changed nodes, leading to additional computa-
tion. Finally, the number of changed nodes increases as the layer depth 
increases, meaning that these architectures work efficiently only for 
shallow neural networks, limiting the depth of the network.

In this work, we address all three limitations. First, we pass updates 
on a per-message level, that is, we recompute only messages that have 
changed. Second, we apply update pruning and explore a specialized 
network architecture that maximizes this effect by placing the max 
pooling layer early in the network. By modulating the number of out-
put features of this layer, we can control the amount of pruning that 
takes place. Finally, we also apply a specialized LUT-SC that cuts the 
computation markedly. With the reduced computational complexity, 
we are able to design two times deeper architectures, which markedly 
boosts the network accuracy.

Hybrid methods. One of the reasons for the lower performance of event- 
based detectors also lies in the properties of the sensor itself. Although 
possessing the capability to detect objects fast and in high-speed and 
high-dynamic-range conditions, the lack of explicit texture informa-
tion in the event stream prevents the networks from extracting rich 
semantic cues. For this reason, several methods have combined events 
and frames for moving-object detections79, tracking80, computational 
photography22,81,82 and monocular depth estimation40. However, these 
are usually based on dense feedforward networks and simple event 
and image concatenation22,82–84 or multi-branch feature fusion40,83. As 
events are treated as dense frames, these methods suffer from the same 
drawbacks as standard dense methods. In this work, we combine events 
and frames in a sparse way without sacrificing the low computational 
complexity of event-by-event processing. This is, to our knowledge, the 
first paper to address asynchronous processing in a hybrid network.

Ablations
Events only. Here we motivate the use of the features of our method. We 
split our ablation studies into two parts: those targeting the efficiency 



(Extended Data Fig. 4d) and those targeting the accuracy (Extended 
Data Fig. 4e) of the method. For all experiments, we use the model shown  
in Extended Data Fig. 1 without the image branch as a baseline and 
report the standard object detection score of mAP (higher is better)85 
on the validation set of the Gen1 dataset41 as well as the computation 
necessary to process a single event in terms of floating point operations 
per event (FLOPS per event, lower is better).
Ablations on efficiency. Key building blocks of our method are LUT-SCs, 
which are an accelerated version of standard spline convolutions35. An 
enabling factor for using LUT-SCs lies in transitioning from 2D to 3D 
convolutions, which we investigate by training a model with 3D spline 
convolutions (Extended Data Fig. 4d, row 1). With an mAP of 31.84, it 
achieves a 0.05 lower mAP than our baseline (bottom row). Using 3D 
convolutions yields a slight decrease in accuracy and does not allow 
us to perform an efficient lookup, yielding 150.87 MFLOPS per new 
event. Using 2D convolutions (row 2) reduces the computation to 79.6 
MFLOPS per event because of the dependence on the dimension d in 
equation (12), which is further reduced to 17.3 MFLOPS per event after 
implementing LUT-SCs (row 3). In addition to the small increase in 
performance due to 2D convolutions, we gain a factor of 8.7 in terms 
of FLOPS per event.

Next, we investigate pruning. We recompute the FLOPS of the previ-
ous model by terminating update propagation after max pooling layers, 
shown in Extended Data Fig. 2b, and reported in Extended Data Fig. 4d 
(row 4). We find that this reduces the computational complexity from 
17.3 to 16.3 MFLOPS per event. This reduction comes from removing 
the orange messages in Extended Data Fig. 2a (bottom). Implement-
ing node position rounding in equation (6) (Extended Data Fig. 4d, 
row 5), enables us to fully prune updates. This method only requires 
4.58 MFLOPS per event. Node position rounding reduces mAP only by 
0.01, justifying its use.

In a final step, we also investigate the use of directed pooling, shown 
in Extended Data Fig. 2d. Owing to this pooling method, fewer edges are 
present after each pooling layer, thus restricting the message passing—
that is, context aggregation abilities of our network. For this reason, 
it achieves only an mAP of 18.35. However, owing to the directedness 
of the graph, in each layer at most only one node needs to be updated 
(except for rare edge inversions), as shown in Extended Data Fig. 2c, 
leading to an overall computational complexity of only 0.31 MFLOPS 
per event. Owing to the lower performance, we instead use the previous 
method when comparing with the state-of-the-art methods. However, 
as will be seen later, the performance is affected to a much lesser degree 
when combined with images.
Ablations on accuracy. We found that three features of our network 
had a marked impact on performance. First, we applied early tempo-
ral aggregation, that is, using gt = 1, which sped up training and led to 
higher accuracy. We trained another model that pooled the temporal 
dimension more gradually by setting gt = 8/2i, where i is the index of 
the pooling layer. This model reached only an mAP of 21.2 (Extended 
Data Fig. 4e, row 3), after reducing the learning rate to 0.002 to enable 
stable training. This highlights that early pooling plays an important 
part because it improves our result by 10.6 mAP. We believe that it is 
important for mixing features quickly so that they can be used in lower 
layers.

Next, we investigate the importance of network depth on task perfor-
mance. To see this, we trained another network, in which we removed 
the skip connection and second (LUT-SC and BN) block from the layer 
in Extended Data Fig. 1c, which resulted in a network with a total of 
eight layers, on par with the network in ref. 31, which had seven layers. 
We see that this network achieves only an mAP of 22.5 (Extended Data 
Fig. 4e, row 2) highlighting the fact that 9.4% in mAP is explained by a 
deeper network architecture. We also combine this ablation with the 
previous one about early pooling and see that the network achieves only 
15.8 mAP, another drop of 6.7% mAP (Extended Data Fig. 4e, row 1). This 
result is on par with the result in ref. 31, which achieved a performance 

of 16.3 mAP, on par with our method. This highlights the importance 
of using a deep neural network to boost performance.

Finally, we investigate using multiple layers before the max poo 
ling layer. We train another model that only has a single-input layer, 
replacing the layer in Extended Data Fig. 1 with a (LUT-SC, BN and ReLU) 
block. This yielded a performance of 30.0 mAP (Extended Data Fig. 4e, 
row 4), which is 1.8 mAP lower than the baseline (Extended Data Fig. 4e, 
row 5). The computational complexity is only marginally lower, which 
is explained by Extended Data Fig. 2c (top). We see that adding layers 
at the input generates only a few additional messages. This highlights 
the benefits of using a directed event graph.
Timing experiments. We compare the time it takes for our dense GNN 
to process a batch of 50,000 events averaged over Gen1, and compare 
it with our asynchronous implementation on a Quadro RTX 4000 lap-
top GPU. We found that our dense network takes 30.8 ms, whereas 
the asynchronous method requires 8.46 ms, a 3.7-fold reduction. We 
believe that with further optimizations, and when deployed on poten-
tially spiking hardware, this method can reduce power and latency by 
additional factors.

Max pooling. In this section, we take a closer look at the pruning 
mechanism. We find that almost all pruning happens in the very 
first max pooling layer. This motivates the placement of the pooling 
layer at the early stages of the network, which allows us to skip most 
computations when pruning happens. Also, as the subgraph is still 
small in the early layers, it is easy to prune the entire update tree. 
We interpret this case as event filtering and investigate this filter in 
Extended Data Fig. 4.

When applied to raw events (Extended Data Fig. 4a), we obtain 
filtered events (Extended Data Fig. 4b), that is, events that passed 
through the first max pooling layer. We observe that max pooling 
makes the events more uniformly distributed over the image plane. 
This is also supported by the density plot in Extended Data Fig. 4b, 
which shows that the distribution of the number of events per-pixel 
shifts to the left after filtering, removing events in regions in which 
there are too many. This behaviour can be explained by the pigeon-hole 
principle when applied to max pooling layers. Max pooling usually 
uses only a fraction of its input nodes to compute the output feature. 
The number of input nodes used by the max pooling layer is upper 
bounded by its output channel dimension, cout, because it could at 
maximum use only one feature from each input node. As a result, max 
pooling selects at most cout nodes for each voxel, resulting in more 
uniformly sampled events.

To study the effect of the output channel dimension on filtering, we 
train four models with cout ∈ {8, 16, 24, 32}, in which our baseline model 
had cout = 16. We report the mAP, MFLOPS per event and fraction of 
events after filtering, ϕ averaged over Gen1, in Extended Data Fig. 4c. 
As predicted, we find that increasing cout increases mAP, MFLOPS and 
ϕ. However, the increase happens at different rates. While MFLOPS 
and ϕ grow roughly linearly, mAP growth slows down significantly 
after c = 24. Interestingly, by selecting cout = 8 we still achieve an mAP 
of 30.6, while using only 21% of events. This type of filtering has inter-
esting implications for future work. An interesting question would be 
whether events that are not pruned carry salient and interpretable 
information.

Images and events. In this section, we ablate the importance of differ-
ent design choices when combining events and images. In all experi
ments, we report the mAP and mean number of MFLOPS per newly  
inserted event over the DSEC-Detection validation set. When comput-
ing the FLOPS, we do not take into account the computation necessary 
by the CNN, because it needs to be executed only once. Our baseline 
model uses DAGr-S for the events branch and ResNet-18 (ref. 30).
Ablations on fusion. In the following ablation studies, we investigate the 
influence of (1) the feature sampling layer and (2) the effect on detection 
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adding at the detection outputs of an event and image branch. We 
summarize the results of this experiment in Extended Data Fig. 5d. 
In summary, we see that our baseline (Extended Data Fig. 5d, row 4) 
achieves an mAP of 37.3 with 6.73 MFLOPS per event. Removing feature 
sampling results in a drop of 3.1 mAP, while reducing the computational 
complexity by 0.73 MFLOPS per event. We argue that the performance 
gain due to feature sampling justifies this small increase in computa-
tional complexity. Removing detection adding at the output reduces 
the performance by 5.8 mAP, while also reducing the computation 
by 1.24 MFLOPS per event. We argue that this reduction comes from 
the fact that the image features are predominantly used to generate 
the output (that is, compared with the events only, which is 18.5 mAP 
lower), and thus more event features are pruned at the max pooling 
layer (roughly 20% more). Finally, if both feature sampling and detec-
tion adding are removed, we arrive at the original DAGr architecture, 
which achieves an mAP of 14.0 with 6.05 MFLOPS per event. It has a 
computational complexity on par with the baseline with detection 
adding, but with a performance of 20.2 mAP lower, justifying the use 
of detection adding.
Other ablations. We found that two more factors helped the perfor-
mance of the method without affecting the computation markedly: 
(1) CNN pretraining and (2) concatenation of image and event features 
that we ablate in Extended Data Fig. 5e. To test the first feature, we 
train the model end to end, without pretraining the CNN branch, and 
found that it resulted in a 0.2-mAP reduction in performance, with a 
negligible reduction in computational complexity. Next, we replaced 
the concatenation operation with a summation, which reduces the 
number of input channels to each spline convolution. This change 
reduces the mAP by 0.5 mAP and the computation by 1.24 MFLOPS per 
event. Instead, naive concatenation requires 7.49 MFLOPS per event 
without the simplifications in equation (18). If we use equation (18), 
we can reduce this computation to 6.74 MFLOPS per event, a roughly 
10% reduction with no performance impact.
Ablation on CNN backbone. We evaluate the ability of our method to 
perform inter-frame detection using different network backbones, 
namely, ResNet-18, ResNet-34 and ResNet-50, and provide the results 
in Extended Data Fig. 5a. Green and reddish colours indicate with and 
without events, respectively. As seen previously with the ResNet-50 
backbone event and image-based methods (green), all show stable 
performance, successfully detecting objects in the 50 ms between two 
frames. As the backbone capacity increases, their performance level 
also increases. We also observe that with increasing time t ranging 
from 0 ms to 50 ms, all methods slightly increase, reach a maximum 
and then decrease again, improving the initial score at t = 0 by between 
0.6 mAP and 0.7 mAP. The performance increase can be explained 
because of the addition of events, that is, more information becomes 
available so that detections can be refined, especially in the dark and 
blurry regions of the image. The subsequent slight decrease can then be 
explained by the fact that image information becomes more outdated. 
By contrast, purely image-based methods (red) suffer significantly 
in this setting. While starting off at the same level as the image and 
event-based methods, they quickly degrade by between 8.7 mAP and 
10.8 mAP after 50 ms. The performance change over time for all meth-
ods is shown in Extended Data Fig. 5c, in which we confirm our findings. 
This decrease highlights the importance of updating the prediction 
between the frames. Using events is an effective and computationally 
cheap way to do so, closing the gap of up to 10.8 mAP. We illustrate this 
gain in performance by using events qualitatively in Fig. 5, in which we 
show object detections of DAGr-S + ResNet-50 in edge-case scenarios.
Timing experiments. We report the runtime of our method in Extended 
Data Table 1 and find the fastest method to be DAGr-S + ResNet50 with 
9.6 ms. Specific hardware implementations are likely to reduce this 
number substantially. Moreover, as can be seen in the comparison, 
MFLOPS per event does not correlate with runtime at these low compu-
tation regimes, and this indicates that significant overhead is present 

in the implementation. We use the PyTorch Geometric86 library, which 
is optimized for batch processing, and thus introduces data handling 
overhead. When eliminating this overhead, runtimes are expected to 
decrease even more.

Further experiments on DSEC-Detection
Event cameras provide additional information. One of the proposed 
use cases for an event camera is to detect objects before they become 
fully visible within the frame. These could be objects, or parts of objects, 
appearing from behind occlusions, or entering the field of view. In this 
case, the first image does not carry sufficient information to make 
an informed decision, which requires waiting for information from  
additional sensors, or integrating context-enriched information from 
details such as shadows and body parts. Integrating this information 
can reduce the uncertainties in partially observable situations and is 
applicable to both image- and event-based algorithms. Event cameras, 
however, provide additional information, which invariably enhances 
prediction, even under partial observability (for example, an arm appe
aring from behind an occlusion or a cargo being lost on a highway).  
To test this hypothesis, we compared our method with the image-based 
baseline with extrapolation on the subset of DSEC-Detection in which 
objects suddenly appear or disappear (a total of 8% of objects). This sub-
set requires further information to fill in these detections. Our event- 
and image-based method achieves 37.2 mAP, and the image-based 
method achieves 33.8 mAP, showing that events can provide a 3.4-mAP 
boost in this case.

Incorporating CNN latency into the prediction. Our hybrid method 
relies on dense features provided by a standard CNN, which is compu-
tationally expensive to run. We thus try to understand if our method 
would also work in a scenario in which dense features appear only after 
computation is finished and then need to be updated by later events. To 
test this case, we perform the following modification to our method. 
After a computation time Δt for computing the dense features, we in-
tegrate the events from the interval [Δt, 50 ms] into the detector. This 
means that for time 0 < t < Δt, no detection can be made, as no features 
are available from images. In this interval, either the event-only method 
from Extended Data Fig. 5d (row 1) can be used, or a linear propaga-
tion from the detection from the previous interval. At time t > Δt, we 
use the events in interval [Δt, t]. The runtimes for the different image 
networks (ResNet-18, ResNet-34 and ResNet-50 + detection head) were 
5.3 ms, 8.2 ms and 12.7 ms, respectively, on a Quadro RTX 4000 laptop 
GPU. We report the results in Extended Data Fig. 3c. We see that on the 
full DSEC-Detection test set after 50-ms events, DAGr-S + ResNet-50 
achieves a performance of 41.6 mAP, 0.3 mAP lower than without  
latency consideration. On the inter-frame detection task, this translates 
to a reduction from 44.2 mAP to 43.8 mAP, still 6.7 mAP higher than the 
image-based baseline with extrapolation implemented. This demon-
strates that our method outperforms image-based methods even when 
considering computational latency due to CNN processing. For smaller 
networks ResNet-34 and ResNet-18, the degradations on the full test set 
are 0.1 mAP and 0.1 mAP, respectively, compared with the correspond-
ing methods without latency consideration. Notably, smaller networks 
have lower latency and thus incur smaller degradations. However, the 
largest model still achieves the highest performance. Nonetheless, to 
minimize the effect of this latency, future work could consider incor-
porating the latency into the training loop, in which case the method 
will probably learn to compensate for it.
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Code availability
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Extended Data Fig. 1 | Overview of the network architecture of DAGr.  
(a) General architecture overview showing the CNN-based ResNet-1830 branch 
and the GNN. Each sensor modality is processed separately, while sharing 
features, and adding objectness, classification and regression scores at the 
output. (b) Directed feature sampling layer. Graph nodes sample features at the 
corresponding pixel locations and concatenate them with their own feature.  
(c) Residual blocks, with arguments n and m denoting input an output channels 

dimension. The + 2 means concatenation with the 2D node position. (d) Max 
pooling layer with arguments gx, g y and gt denoting the number of grid cells in 
each dimension. (e) Multiscale YOLOX-inspired detection head, outputting 
bounding boxes (regression), class scores and object confidence. (f) Look-up- 
Table Spline Convolution (LUT-SC), which use uses discrete-valued relative 
distance between neighboring nodes to look up a weight matrices.



Extended Data Fig. 2 | Asynchronous graph operations for a single event.  
(a) Update rule for convolution layers. Node position or feature changes result 
in update messages from the changed node (orange arrows). Node position 
changes result in recompute messages to the changed node (green messages). 
(b) Update pruning in pooling layers. If a changed input nodes is in the currently 
unused (grayed out) set, it does not have a feature higher than the current 
output and it does not change the output node sufficiently to change rounding, 
the update is pruned. (c) Update propagation applied to multiple layers. Before 
pooling, edges are directed, so the number of computed messages remains 
constant with network depth. After pooling, bidirectional edges appear, 

leading to a growth in the number of computed messages in lower layers.  
(d) To reduce this growth, directed voxel grid pooling is introduced. Different 
to standard pooling, directed pooling max-pools over the time dimension, and 
filters edges for which the source node has a higher timestamp than the input 
node (grayed out), resulting in a directed event graph even after pooling.  
(e) Asynchronous updating of directed pooling layer. Sometimes edges are 
inverted when an older node is promoted to a newer node through max-pooling 
of the time dimension. In this case, the edges need to be reversed, leading to a 
new message (pink) being sent to and from the updated node.
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Extended Data Fig. 3 | Sensitivity analysis of our method. (a) Performance  
of DAGr+ResNet-50 on the DSEC-Detection test-set for different event-to- 
image synchronization errors. (b) Object detection score of our method for 
differently interpolated ground truth. Here we use the DSEC-Detection subset 
with object tracks with a length of at least four. (c) Performance of different 

CNN backbones with DAGr-S on the full DSEC-Detection test set, with and 
without CNN latency considered. All performances are measured in mAP 
(higher is better). Speed refers to the average runtime of the CNN alone over 
images from the test set.



Extended Data Fig. 4 | Ablations on different network components of the 
GNN. (a-d) Effect of update pruning due to max pooling. We interpret max 
pooling as a kind of event filter. In (a-b) we show an example of aggregated 
events before (a) and after (b) filtering. This filter acts as a saliency detector, 
only letting through events with “new information”, and removing redundant 
events in high event rate regions. This results in a more uniform distribution of 
events (c). We can control the filter strength by modulating the number of 

output features, c. As seen in (d), increasing c increases both computation and 
mAP. However, mAP growth drastically reduces in slope after c = 24. The dot 
size is proportional to c, and ϕ measures the proportion of updates that pass 
through the filter. In our baseline setting with c = 16, we see that only 27% of 
updates pass the first max pooling layer. (e) Features affecting computational 
complexity. (f) Features affecting accuracy.
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Extended Data Fig. 5 | Ablations on components of the hybrid network.  
(a-c) Compare the network performance between two frames, on a subset of 
DSEC-Detection. (a) Our methods performance with ResNet-18, ResNet-34, and 
ResNet-50 backbones, with events (green), and without events (red). Methods 
without events propagate detections from the image at t = 0 to the current 
time. (b) Comparison of our method to Events+YOLOX34 (blue), a baseline 

which takes in concatenated images and events up to time t. (c) Drop in mean 
average precision (mAP) over time, for each method. (d-c) Compare the 
network performance on the full DSEC-Detection test set. (d) Ablation on the 
fusion strategies between GNN-based detections from events and CNN-based 
detections from images. (e) Ablation on CNN pretraining and feature 
concatenation.



Extended Data Fig. 6 | Preview of DSEC-Detection. (a-c) Preview of samples 
from the training (a), validation (b) and test set (c) of DSEC-Detection. It 
features spatiotemporally aligned events and frames with object detection 

labels for pedestrians and cars. (d) Breakdown of the data in DSEC-Detection, 
and comparison with related work.
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Extended Data Table 1 | Quantitative comparison of our method against state-of-the-art

(a) Comparison against asynchronous methods in terms of computational complexity, task performance, and energy consumption. Results of event-based methods on the Gen1 detection  
dataset41 and N-Caltech10142. (b) Comparison of event and image-based detectors on DSEC-Detection. Here, methods are tasked to predict labels 50 ms after the first image, given a single 
image, and events. Speed refers to the average runtime of event insertion into the GNN averaged over the dataset.



Extended Data Table 2 | Overview of the automotive cameras 
that are currently in use

For each camera we provide the resolution in megapixels (MP), frames per second (FPS) and 
perceptual latency, in milliseconds. Data from refs. 4–9,52.
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