
1034 | Nature | Vol 629 | 30 May 2024

Article

Low-latency automotive vision with event
cameras

Daniel Gehrig1 ✉ & Davide Scaramuzza1 ✉

The computer vision algorithms used currently in advanced driver assistance systems
rely on image-based RGB cameras, leading to a critical bandwidth–latency trade-off
for delivering safe driving experiences. To address this, event cameras have emerged
as alternative vision sensors. Event cameras measure the changes in intensity
asynchronously, offering high temporal resolution and sparsity, markedly reducing
bandwidth and latency requirements1. Despite these advantages, event-camera-based
algorithms are either highly efficient but lag behind image-based ones in terms of
accuracy or sacrifice the sparsity and efficiency of events to achieve comparable
results. To overcome this, here we propose a hybrid event- and frame-based object
detector that preserves the advantages of each modality and thus does not suffer
from this trade-off. Our method exploits the high temporal resolution and sparsity
of events and the rich but low temporal resolution information in standard images
to generate efficient, high-rate object detections, reducing perceptual and
computational latency. We show that the use of a 20 frames per second (fps) RGB
camera plus an event camera can achieve the same latency as a 5,000-fps camera with
the bandwidth of a 45-fps camera without compromising accuracy. Our approach
paves the way for efficient and robust perception in edge-case scenarios by
uncovering the potential of event cameras2.

Frame-based sensors such as RGB cameras face a bandwidth–latency
trade-off: higher frame rates reduce perceptual latency but increase
bandwidth demands, whereas lower frame rates save bandwidth at
the cost of missing vital scene dynamics due to increased perceptual
latency3 (Fig. 1a). Perceptual latency measures the time between the
onset of a visual stimulus and its readout on the sensor.

This trade-off is notable in automotive safety, in which reaction times
are important. Advanced driver assistance systems record at 30–45
frames per second (fps) (refs. 4–9), leading to blind times of 22–33 ms.
These blind times can be crucial in high-speed scenarios, such as detect-
ing a fast-moving pedestrian or vehicle or a lost cargo. Moreover, when
high uncertainties are present, for example, when traffic participants
are partially occluded or poorly lit because of adverse weather condi-
tions, these frame rates artificially prolong decision-making for up to
0.1–0.5 s (refs. 10–14). During this time, a suddenly appearing pedes-
trian (Fig. 1b) running at 12 kph would travel 0.3–1.7 m, whereas a car
driving at 50 kph would travel 1.4–6.9 m.

Reducing this blind time is vital for safety. To address this, the indus-
try is moving towards higher frame rate sensors, substantially increas-
ing the data volume5. Current driverless cars collect up to 11 terabytes of
data per hour, a number that is expected to rise to 40 terabytes (ref. 15).
Although cloud computing offers some solutions, it introduces high
network latency.

A promising alternative are event cameras, which capture per-pixel
changes in intensity instead of fixed interval frames1. They offer low
motion blur, a high dynamic range, spatio-temporal sparsity and
a microsecond-level resolution with lower bandwidth and power

usage16,17. They adapt to scene dynamics, providing low-latency and
low-bandwidth advantages. However, the accuracy of event-based
methods is currently limited by the inability of the sensors to capture
slowly varying signals18–20 and the inefficiency of processing methods
that convert events to frame-like representations for analysis with
convolutional neural networks (CNNs)19,21–29. This leads to redundant
computation, higher power consumption and higher computational
latency. Computational latency measures the time since a measurement
was read out until producing an output.

We propose a new hybrid event- and frame-based object detector that
combines a standard CNN for images and an efficient asynchronous
graph neural network (GNN) for events (Fig. 2). The GNN processes
events in a recursive fashion, which minimizes redundant computa-
tion and leverages key architectural innovations such as specialized
convolutional layers, targeted skipping of events and a specialized
directed event graph structure to enhance computational efficiency.

Our method leverages the advantages of event- and frame-based
sensors, leveraging the rich context information in images and sparse
and high-rate event information from events for efficient, high-rate
object detections with reduced perceptual latency. In an automo-
tive setting, it covers the blind time intervals of image-based sensors
while keeping a low bandwidth. In doing so, it provides additional cer-
tifiable snapshots of reality that show objects before they become
visible in the next image (Fig. 1c) or captures object movements that
encode the intent or trajectory of traffic participants.

Our findings show that pairing a 20-fps RGB camera with an event
camera can match the latency of a 5,000-fps camera but with the

https://doi.org/10.1038/s41586-024-07409-w

Received: 24 August 2023

Accepted: 10 April 2024

Published online: 29 May 2024

Open access

 Check for updates

1Robotics and Perception Group, University of Zurich, Zurich, Switzerland. ✉e-mail: dgehrig@ifi.uzh.ch; sdavide@ifi.uzh.ch

https://doi.org/10.1038/s41586-024-07409-w
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-024-07409-w&domain=pdf
mailto:dgehrig@ifi.uzh.ch
mailto:sdavide@ifi.uzh.ch

Nature | Vol 629 | 30 May 2024 | 1035

bandwidth of a 45-fps camera, enhancing mean average precision (mAP)
significantly (Fig. 4c). This approach harnesses the untapped potential
of event cameras for efficient, accurate and fast object detection in
edge-case scenarios.

System overview
Our system, which we term deep asynchronous GNN (DAGr), is shown
in Fig. 2. For a detailed visualization of each network component, see
Extended Data Fig. 1, and for a visual explanation, see Supplementary
Video 1. It combines a CNN30, for image processing, with an asynchro-
nous GNN31,32, for processing of the events. These processing steps
result in object detections with a high temporal resolution and a low
latency (Fig. 2, green rectangles, bottom timeline).

We next discuss how events and images are combined. Each time
an image arrives, the CNN processes it and shares the features with
the asynchronous GNN in a unidirectional way, that is, the CNN fea-
tures are shared with the GNN but not vice versa. The GNN thus lever-
ages image features to boost its performance, especially when only
a few events are triggered, as is common in static or slow-motion
scenarios.

The asynchronous GNN constructs spatio-temporal graphs from
events, following an efficient CUDA implementation inspired by ref. 32,
and processes this graph together with features obtained from images
(through skip connections) through a sequence of convolution and
pooling layers. To facilitate both deep and efficient network training,
we use graph residual layers30 (Extended Data Fig. 1c). Moreover, we
design a specialized voxel grid max pooling layer33 (Extended Data
Fig. 1d) that reduces the number of nodes in early layers and thus limits
computation in lower layers. We mirror the detection head and training
strategy of YOLOX34, although we replace the standard convolution
layers with graph convolution layers (Extended Data Fig. 1e). Finally,
we design an efficient variant of the spline convolution layer35 as a core
building block. This layer pre-computes lookup tables and thus saves
computation compared with the original layer in ref. 35.

To enhance efficiency, we follow the steps proposed in refs. 31,32,36
to convert the GNN to an asynchronous model. We first train the net-
work on batches of events and images using the training strategy in
ref. 34 and then convert the trained model into an asynchronous model
by formulating recursive update rules. In particular, given an image I0

and events E up to the next frame (50 ms later), we train the model to
detect objects in the next frame.

The asynchronous model has the identical weights of the trained
model but uses recursive update rules (Extended Data Fig. 2) to process
events individually and produces an identical output. At each layer,
it retains a memory of its previous graph structure and activation,
which it updates for each new event. These updates are highly localized
and thus reduce the overall computation by a large margin, as shown
in refs. 31,32,36. To maximize the computation savings through this
method, we adopt three main strategies. First, we limit the computa-
tion in each layer to single messages that are sent between nodes that
had their feature or node position changed (Extended Data Fig. 2a),
and these changes are then relayed to the next layer. Second, we prune
non-informative updates, which stops the relaying of updates to lower
layers (Extended Data Fig. 2b). This pruning step happens at max pool-
ing operations, which are executed early in the network and thus maxi-
mize the potential of pruning. Finally, we use directed and undirected
event graphs (Extended Data Fig. 2c). Directed event graphs connect
only nodes if they are temporally ordered, which stifles update propa-
gation and leads to further efficiency gains.

We report ablation studies on each component of our method in
the Methods. Here we report comparisons of our system with state-
of-the-art event- and frame-based object detectors both in terms of
efficiency and accuracy. First, we show the performance of the asyn-
chronous GNN when processing events alone before showing results
with images and events. Then, we compare the ability of our method to
detect objects in the blind time between consecutive frames. We find
that our method balances achieving high performance—exceeding
both image- and event-based detectors by using images—and remain-
ing efficient, more so than existing methods that process events as
dense frames.

Using only events
We compare the GNN in our method with state-of-the-art dense and
asynchronous event-based methods and report results in Fig. 3a,b.
For a full table of results, see Extended Data Table 1. We enumerate
the methods in the Methods. The metrics we report are the mAP, the
average number of floating point operations (FLOPS) for each newly
inserted event, and the average power consumption for computation.

Event camera

Low-speed camera

a

Latency (ms)

B
an

d
w

id
th

 (M
b

 s
–1

)

Time (s)

Early detections
with events

Late detections
with images

b c
200

175

150

125

100

75

50

25

0
1006040200 80

High-speed camera

∝ Latency–1

Time (s)

Fig. 1 | Bandwidth–latency trade-off. a, Unlike frame-based sensors, event
cameras do not suffer from the bandwidth–latency trade-off: high-speed
cameras (top left) capture low-latency but high-bandwidth data, whereas
low-speed cameras (bottom right) capture low-bandwidth but high-latency
data. Instead, our 20 fps camera plus event camera hybrid setup (bottom left,
red and blue dots in the yellow rectangle indicate event camera measurements)
can capture low-latency and low-bandwidth data. This is equivalent in latency
to a 5,000-fps camera and in bandwidth to a 45-fps camera. b, Application

scenario. We leverage this setup for low-latency, low-bandwidth traffic
participant detection (bottom row, green rectangles are detections) that
enhances the safety of downstream systems compared with standard cameras
(top and middle rows). c, 3D visualization of detections. To do so, our method
uses events (red and blue dots) in the blind time between images to detect
objects (green rectangle), before they become visible in the next image
(red rectangle).

1036 | Nature | Vol 629 | 30 May 2024

Article

To measure the power, we count the number of multiply accumulate
operations (MACs) and multiply it by 1.69 pJ (ref. 37). We evaluate four
versions of our model: nano (N), small (S), medium (M) and large (L).
These differ in the number of features in the layer blocks 3, 4 and 5 and
in the detection heads and have 32, 64, 92 and 128 channels in these
layers, respectively.

According to Fig. 3, recurrent dense methods RED and ASTM-Net
outperform our large model by 7.9 mAP and 14.6 mAP, respectively, but
use more computation (4,712 compared with 1.36 for our nano-model).
We believe that deeper networks and recurrence are two main factors
that help performance in their methods. By contrast, our large model
with 32.1 mAP outperforms the recurrent method MatrixLSTM (ref. 29)
by 1.1 mAP and 120 times fewer FLOPS, and outperforms feedforward
methods Events + RRC (ref. 38) (30.7 mAP), Inception + SSD (ref. 26)
(30.1 mAP) and Events + YOLOv3 (ref. 27) (31.2 mAP). When compared
with the spiking network Spiking DenseNet39, we find that our method
has a 13.1 point higher mAP. The low performance of the SNN is expected
to increase as better learning strategies become available to the com-
munity. We find that our small-model outperforms all sparse methods
in terms of computation, with around 13% times fewer million float-
ing point operations (MFLOPS) per event than the runner-up AEGNN
(ref. 31). It also achieves a 14.1-mAP higher performance than AEGNN.
Our smallest network, nano, is 3.8 times more efficient while still out-
performing AEGNN by 10 mAP. In terms of power consumption, our
smallest model requires only 1.93 μJ per event, which is the lowest for
all methods.

On the N-Caltech101 dataset, our small model outperforms the
state-of-the-art dense and sparse methods, achieving 70.2 mAP, which
is 5.9 mAP higher than the runner-up AsyNet (ref. 36) and uses less
computation than the state-of-the-art AEGNN (ref. 31). Our large model
achieves the highest score with 73.2 mAP. Our nano-model achieves the

lowest computation of 2.28 MFLOPS per event, 3.25 times lower than
AEGNN, with a 3.4% higher mAP.

Using images and events
We evaluate the ability of our method to fuse images and events by
validating its performance on our self-collected DSEC-Detection data-
set. Details on the dataset and collection can be found in the Methods
and ref. 40. Instructions on how to download the DSEC-Detection and
visualize it can be found at https://github.com/uzh-rpg/dsec-det. We
report the performance of our method and state-of-the-art event- and
frame-based methods after seeing one image, and 50 ms of events after
that image. We also report the computation in MFLOPS per inserted
event in Fig. 3c. The results are computed over the DSEC-Detection
test set. For a full table of results, including the power consumption
per event in terms of μJ, see Extended Data Table 1.

We see that our baseline method with the ResNet-18 backbone
reaches a 9.1 point higher mAP than the Inception + SSD (18.4 mAP) and
Events + YOLOv3 (28.7 mAP) methods. We argue that this discrepancy
comes from the better detection head as observed in ref. 34 and the sub-
optimal way of stacking events into event histograms27. Events + YOLOX
outperforms our method, which is compared on the same ResNet-18
backbone (37.6 mAP for our method compared with 40.2 mAP for
Events + YOLOX). This difference may come from the bidirectional
feature sharing between event and frame features in Events + YOLOX,
which is absent in our method. Finally, using a larger ResNet-50 back-
bone boosts our performance to 41.9 mAP. In terms of computational
complexity, our method outperforms all methods, using only roughly
0.03% of the computation of the runner-up Events + YOLOX. The
computational complexity is only weakly affected by the CNN back-
bone, decreasing as the capacity of the CNN backbone is increased.

High-rate event
processing

Low-rate
image

processing

Directed and sparse feature sharing

CNN ……

Low per-event computation

Time (s)

Activations
updated
sparsely

Detections at high temporal resolutionetections at high temporal resolution

… …

Events

GNN… CNN

Fig. 2 | Overview of the proposed method. Our method processes dense
images and asynchronous events (blue and red dots, top timeline) to produce
high-rate object detections (green rectangles, bottom timeline). It shares
features from a dense CNN running on low-rate images (blue arrows) to boost the

performance of an asynchronous GNN running on events. The GNN processes
each new event efficiently, reusing CNN features and sparsely updating GNN
activations from previous steps.

https://github.com/uzh-rpg/dsec-det

Nature | Vol 629 | 30 May 2024 | 1037

This indicates that event features are increasingly filtered as the image
features become more important. Again, in terms of power consump-
tion, our method outperforms all others by using only 5.42 μJ per event.
Adopting directed edges (marked with dagger symbol) reduces the
computation of our method with ResNet-50 backbone by 91% while
incurring only an mAP reduction of 2%.

Inter-frame detection performance
We report the detection performance of our method for different
temporal offsets from the image tΔi

n with n = 10 and i = 0, …, 10 and
Δt = tE − tI = 50 ms and evaluate on interpolated ground truth,
described in the Methods. Here, tI denotes the frame time, and the
start time of the event window inserted into the GNN, and tE denotes
the end time of the event window. Note the ground truth here is lim-
ited to a subset for which no appearing or disappearing objects are
present. We thus evaluate the ability of the method to measure both
linear (between the interval) and nonlinear motions (at t = 50 ms), as
well as complex object deformations. These arise especially in mod-
elling pedestrians, which are frequently subject to sudden, complex
and reflexive motion and have deformable appearances such as when

they stretch their arms, stumble or fall. We plot the detection perfor-
mance for different temporal offsets in Fig. 4a, with and without
events (cyan and yellow, respectively), and for the Events + YOLOX
baseline (blue). For the image baseline, we also test with a constant
and linear extrapolation model (yellow and brown). Whereas with
the constant extrapolation model we keep object positions constant
over time, for the linear model we perform a matching step with pre-
vious detections and then propagate the objects linearly into the
future. More details on the linear extrapolation technique are given
in the Methods. We also provide further results with different back-
bones in the Methods.

Our event- and image-based method (cyan) shows a slight perfor-
mance increase throughout the 50-ms period, ending with a 0.7 mAP
higher score after 50 ms. This is probably because of the addition of
events, that is, more information becomes available. The subsequent
slight decrease is probably because of the image information becoming
more outdated. Events + YOLOX starts at a lower mAP of 34.7 before
rising to 42.5 and settling at 42.2 at 50 ms. Notably, Events + YOLOX
has an 8.8 mAP lower performance than our method at t = 0 and is
less stable overall, gaining up to 7.5 mAP between 0 ms and 50 ms.
Although all methods were trained with a fixed time window of 50 ms,

Computation per new event (MFLOPS per event)

m
A

P
a b c

DAGr-N
DAGr-S

DAGr-M DAGr-L

AEGNN

NVS-S
AsyNet

Dense recurrence Dense feedforward AsynchronousProposed

ASTM-Net

RED
MatrixLSTM + YOLOv3

Events + RRC
Inception + SSD

Events + YOLOv3

AsyNet
AEGNN

YOLE

DAGr-S + ResNet-50

Inception + SSD

Events + YOLOv3

Events + YOLOXGoal
Goal

Goal

DAGr-S + ResNet-50†

40

20

0

30

10

10–1 100 101 102 103 104 105

Computation per new event (MFLOPS per event)
10–1 100 101 102 103 104 105

Computation per new event (MFLOPS per event)
10–1 100 101 102 103 104 105

NVS-S

DAGr-N

DAGr-S

DAGr-M DAGr-L

DAGr-S + ResNet-34
DAGr-S + ResNet-18

DAGr-S + ResNet-34†

DAGr-S + ResNet-18†m
A

P

70

50

30

60

40

80

m
A

P 35

25

15

30

20

40

45

50

Fig. 3 | Comparison summary of our method with state-of-the-art methods.
a,b, Comparison of asynchronous, dense feedforward and dense recurrent
methods, in terms of task performance (mAP) and computational complexity
(MFLOPS per inserted event) on the purely event-based Gen1 detection dataset41

(a) and N-Caltech101 (ref. 42) (b). c, Results of DSEC-Detection. All methods on
this benchmark use images and events and are tasked to predict labels 50 ms
after the first image, using events. Methods with dagger symbol use directed
voxel grid pooling. For a full table of results, see Extended Data Table 1.

Time after image (ms)
Eve

nt
s

Eve
nt

s +

20
 H

z i
m

ag
es

m
A

P

m
A

P

Bandwidth (Mb s–1)

DAGr-S + ResNet-50 (ours)
Events + YOLOX

YOLOX + ResNet-50 con. extrap.
YOLOX + ResNet-50 lin. extrap.

Events + image-based

Tesla + Sony IMX490

Omnivision + OX08B

Bosch + MPC3

Sony IMX224
Sony IMX290NVQ

Increasing frame rate

Worst-case mAP
Average mAP

Image-based
Event- and image-based

Goal

a b c

35

30

40

45

50

65

60

40200 3010 50

Image-based

Son
y I

M
X29

0N
QV

Son
y I

M
X22

4

Bos
ch

 +
 M

PC3

Te
sla

 +
 S

on
y I

M
X49

0

Om
niv

isi
on

 +
 O

X08
B

M
ob

ile
Eye

 +

KAC-9
61

9
Cru

ise

B
an

d
w

id
th

 (M
b

 s
–1

)

150

125

100

75

50

25

0

Sony IMX290NQV
Sony IMX224

Bosch + MPC3
Tesla + Sony IMX490
Omnivision + OX08B
MobileEye +
KAC-9619 Cruise

44

43

42

41

40

39

38

DAGr-S + ResNet-50 (ours)

MobileEye +
KAC-9619 Cruise

1208040 10060 160140

Fig. 4 | Comparison of inter-frame detection performance for our method
and state-of-the-art methods. a, Detection performance in terms of mAP
for our method (cyan), baseline method Events + YOLOX (ref. 34) (blue) and
image-based method YOLOX (ref. 34) with constant and linear extrapolation
(yellow and brown). Grey lines correspond to inter-frame intervals of automotive
cameras. b, Bandwidth requirements of these cameras, and our hybrid event +
image camera setup. The red lines correspond to the median, and the box

contains data between the first and third quartiles. The distance from the box
edges to the whiskers measures 1.5 times the interquartile range. c, Bandwidth
and performance comparison. For each frame rate (and resulting bandwidth),
the worst-case (blue) and average (red) mAP is plotted. For frame-based methods,
these lie on the grey line. The performance using the hybrid event + image
camera setup is plotted as a red star (mean) and blue star (worst case). The black
star points in the direction of the ideal performance–bandwidth trade-off.

1038 | Nature | Vol 629 | 30 May 2024

Article

our method can more stably generalize to different time windows,
whereas Events + YOLOX overfits to time windows close to 50 ms.

By contrast, the purely image-based method (yellow) with constant
extrapolation degrades by 10.8 mAP after 50 ms. With linear extrap-
olation, this degradation is reduced to 6.4 mAP. This highlights the
importance of using events as an extra information source to update
predictions and provide certifiable snapshots of reality. Qualitative
comparisons in Fig. 5 support the importance of events. In the first
image (first column), some cars or pedestrians are not visible either
because of image degradation (rows 1–3) or because they are outside
the field of view (rows 4 and 5). Events from an event camera (second
column) make objects that are poorly lit (rows 1–3) or just entering the
field of view (rows 4 and 5) visible. In the second frame (third column),
objects become visible in the next frame (rows 2–5); however, in sce-
narios such as in rows 4 and 5, the car has already undergone substan-
tial movement, which may indicate a safety hazard in the immediate
future. Using the events in Fig. 5 (second column) can provide valuable
additional time to plan and increase safety. Moreover, we conclude
from the results at time t = 50 ms that events improve object detec-
tion for nonlinearly moving or deformable objects over image-based
approaches, even when considering linear extrapolation.

It is also crucial to put the increase in mAP into the context of the
application. The mAP measures a weighted average of precisions at each
detection threshold. At each threshold, the weight corresponds to the
increase in recall from the previous threshold. The mAP is thus maxi-
mized if a method retains a high precision while the precision-recall
curve undergoes a steep increase. We observe that using an event
camera mostly aids in increasing the recall slope. The recall slope is
increased because the addition of an event camera improves object
localization between the frames. This improvement in localization
entails a higher intersection over union and thus reduces false negatives
at high thresholds. Reducing false negatives contributes to increased
recall.

Bandwidth–performance trade-off
The previous results show that low-frame-rate cameras yield lower mAP
after the end of the frame interval. We characterize this mAP for differ-
ent frame-rate sensors in Fig. 4a (grey lines). For the full list of compared
automotive cameras, see Extended Data Table 2. Although a frame
rate of 120 fps (ref. 6) leads to only a 0.7-mAP drop, 30 fps (refs. 4,9)
leads to a 6.9-mAP drop. We plot this drop over the required bandwidth

First image I0 Detections between frames Second image I1

Fig. 5 | Qualitative results of the proposed detector for edge-case scenarios.
The first column shows detections for the first image I0. The second column
shows detections between images I0 and I1 using events. The third column

shows detections for the second image I1. Detections of cars are shown by green
rectangles, and of pedestrians by blue rectangles.

Nature | Vol 629 | 30 May 2024 | 1039

(Fig. 4b) in Fig. 4c and also show our setup for comparison. The band-
width was computed for an automotive-grade VGA RGB camera with
a 12-bit depth (ref. 40) at different frame rates (see Extended Data
Table 2 for a summary).

For each image sensor, we compute the minimum and average mAP
within the range from t = 0 to t = ∆T seconds, where ∆T is the inter-
frame interval corresponding with the worst-case and average per-
formance. Note that the worst-case mAP indicates robustness in
safety-critical situations. Our method outperforms YOLOX running
with lower-frame-rate cameras in terms of accuracy while outperform-
ing the high-frame-rate (120 fps) camera-based method in terms of
both accuracy and bandwidth. Regarding worst-case and average
mAP, our method outperforms YOLOX running on all different cam-
eras. In particular, our method outperforms YOLOX running with
the 45-fps MPC3 camera from Bosch7 by 2.6 mAP, while requiring
only 4% more data (64.9 Mb s−1 compared with 62.3 Mb s−1). It out-
performs the 120 fps Sony IMX224 (ref. 6) by 0.2 mAP while requiring
only 41% of the bandwidth. This finding shows that the combina-
tion of a 20-fps RGB camera with an event camera features a 0.2-ms
perceptual latency, on par with that of a 5,000-fps RGB camera, but
with only 4% more data bandwidth than a 45-fps automotive sensor
(Fig. 4b). Figure 4a,c implies that this sensor combination does not
incur a performance loss compared with high-speed standard cameras
and can increase the worst-case performance by up to 2.6% over the
45-fps camera.

Discussion
Leveraging the low latency and robustness of event cameras in the auto-
motive sector requires a carefully designed algorithm that considers
the different data structures of events and frames. We have presented
DAGr, a highly efficient object detector that shows several advantages
over state-of-the-art event- and image-based object detectors. First,
it uses a highly efficient asynchronous GNN, which processes events
as a streaming data structure instead of a dense one26,27,34 and is thus
four orders of magnitude more efficient. Second, it innovates on the
architecture building blocks to scale the depth of the network while
remaining more efficient than competing asynchronous methods31,32.
As a result of a deeper network, our method can achieve higher accuracy
compared with all other sparse methods. Finally, in combination with
images, our method can effectively detect objects in the blind time
between frames and maintain a high detection performance through-
out this blind time, unlike competing baseline methods. Moreover, it
can achieve this while remaining highly efficient, unlike other compared
fusion methods that need to reprocess data several times26,27,34 leading
to wasteful computation.

Combining this approach with additional sensors such as LiDAR (light
detection and ranging) sensors can present a promising future research
direction. LiDARs, for example, can provide strong priors, which may
increase the performance of our approach and reduce complexity if
shallower networks are used.

Finally, although the current approach promises four orders of
magnitude efficiency improvements over the state-of-the-art event-
and image-based approaches, this does not yet translate to the same
time efficiency gains. The current work improves the runtime perfor-
mance of the algorithm by 3.7 over dense methods, but further runtime
reductions must come from a suitable implementation on potentially
spiking hardware accelerators.

Notwithstanding the remaining limitations and future work, demon-
strating several orders of magnitude efficiency gains compared with
traditional event- and image-based methods and leveraging images for
robust and low-bandwidth, low-latency object detection represents a
milestone in computer vision and machine intelligence. These results
pave the way to efficient and accurate object detection in edge-case
scenarios.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-024-07409-w.

1. Gallego, G. et al. Event-based vision: a survey. In Proc. IEEE Transactions on Pattern
Analysis and Machine Intelligence Vol. 44, 154–180 (IEEE, 2020).

2. Big data needs a hardware revolution. Nature 554, 145–146 (2018).
3. Falanga, D., Kleber, K. & Scaramuzza, D. Dynamic obstacle avoidance for quadrotors with

event cameras. Sci. Robot. 5, eaaz9712 (2020).
4. Cruise. Cruise 101: Learn the Basics of How a Cruise Car Navigates City Streets Safely and

Efficiently. https://getcruise.com/technology (2023).
5. Cristovao, N. Tesla’s FSD hardware 4.0 to use cameras with LED flicker mitigation. Not a

Tesla App. https://www.notateslaapp.com/news/679/tesla-s-fsd-hardware-4-0-to-use-
new-cameras (2022).

6. Sony. Image Sensors for Automotive Use. https://www.sony-semicon.com/en/products/
is/automotive/automotive.html (2023).

7. Bosch. Multi Purpose Camera: Combination of Classic Cutting Edge Computer Vision
Algorithms and Artificial Intelligence Methods. https://www.bosch-mobility.com/media/
global/solutions/passenger-cars-and-light-commercial-vehicles/driver-assistance-
systems/multi-camera-system/multi-purpose-camera/summary_multi-purpose-
camera_en.pdf (2023).

8. OmniVision. OX08B4C 8.3 MP Product Brief. https://www.ovt.com/wp-content/uploads/
2022/01/OX08B4C-PB-v1.0-WEB.pdf (2023).

9. Mobileye. EyeQ: Vision System on a Chip. https://www.mobileye-vision.com/uploaded/
eyeq.pdf (2023).

10. Cui, A., Casas, S., Wong, K., Suo, S. & Urtasun, R. GoRela: go relative for viewpoint-
invariant motion forecasting. In Proc. 2023 IEEE International Conference on Robotics and
Automation (ICRA) 7801–7807 (IEEE, 2022).

11. Wang, X., Su, T., Da, F. & Yang, X. ProphNet: efficient agent-centric motion forecasting
with anchor-informed proposals. In Proc. 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) 21995–22003 (IEEE, 2023).

12. Zhou, Z., Wang, J., Li, Y.-H. & Huang, Y.-K. Query-centric trajectory prediction. In Proc.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 17863–17873
(IEEE, 2023).

13. Zeng, W., Liang, M., Liao, R. & Urtasun, R. Systems and methods for actor motion
forecasting within a surrounding environment of an autonomous vehicle, US Patent
0347941 (2023).

14. Shashua, A., Shalev-Shwartz, S. & Shammah, S. Systems and methods for navigating with
sensing uncertainty. US patent 0269277 (2022).

15. Naughton, K. Driverless cars’ need for data is sparking a new space race. Bloomberg
(17 September 2021).

16. Lichtsteiner, P., Posch, C. & Delbruck, T. A 128 × 128 120 dB 15 μs latency asynchronous
temporal contrast vision sensor. IEEE J. Solid State Circuits 43, 566–576 (2008).

17. Brandli, C., Berner, R., Yang, M., Liu, Shih-Chii. & Delbruck, T. A 240 × 180 130 dB 3 μs
latency global shutter spatiotemporal vision sensor. IEEE J. Solid State Circuits 49,
2333–2341 (2014).

18. Sun, Z., Messikommer, N., Gehrig, D. & Scaramuzza, D. ESS: learning event-based
semantic segmentation from still images. In Proc. 17th European Conference of Computer
Vision (ECCV) 341–357 (ACM, 2022).

19. Perot, E., de Tournemire, P., Nitti, D., Masci, J. & Sironi, A. Learning to detect objects with a
1 megapixel event camera. In Proc. Advances in Neural Information Processing Systems
33 (NeurIPS) 16639–16652 (eds Larochelle, H. et al.) (2020).

20. Alonso, Iñigo and Murillo, A. C. EV-SegNet: semantic segmentation for event-based
cameras. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW) 1624–1633 (IEEE, 2019).

21. Tulyakov, S., Fleuret, F., Kiefel, M., Gehler, P. & Hirsch, M. Learning an event sequence
embedding for dense event-based deep stereo. In Proc. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV) 1527–1537 (IEEE, 2019).

22. Tulyakov, S. et al. Time lens: event-based video frame interpolation. In Proc. 2021 IEEE/
CVF Conference on Computer Vision and Pattern Recognition (CVPR) 16150–16159
(IEEE, 2021).

23. Gehrig, D., Loquercio, A., Derpanis, K. G. & Scaramuzza, D. End-to-end learning of
representations for asynchronous event-based data. In Proc. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV) 5632–5642 (IEEE, 2019).

24. Zhu, A. Z., Yuan, L., Chaney, K. & Daniilidis, K. Unsupervised event-based learning of
optical flow, depth, and egomotion. In Proc. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) 989–997 (IEEE, 2019).

25. Rebecq, H., Ranftl, R., Koltun, V. & Scaramuzza, D. Events-to-video: bringing modern
computer vision to event cameras. In Proc. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) 3852–3861 (IEEE, 2019).

26. Iacono, M., Weber, S., Glover, A. & Bartolozzi, C. Towards event-driven object detection
with off-the-shelf deep learning. In Proc. 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) 1–9 (IEEE, 2018).

27. Jian, Z. et al. Mixed frame-/event-driven fast pedestrian detection. In Proc. 2019
International Conference on Robotics and Automation (ICRA) 8332–8338 (IEEE, 2019).

28. Li, J. et al. Asynchronous spatio-temporal memory network for continuous event-based
object detection. IEEE Trans. Image Process. 31, 2975–2987 (2022).

29. Cannici, M., Ciccone, M., Romanoni, A. & Matteucci, M. A differentiable recurrent surface
for asynchronous event-based data. In Proc. European Conference of Computer Vision
(ECCV) (eds Vedaldi, A. et al.) Vol. 12365, 136–152 (Springer, 2020).

https://doi.org/10.1038/s41586-024-07409-w
https://getcruise.com/technology/
https://www.notateslaapp.com/news/679/tesla-s-fsd-hardware-4-0-to-use-new-cameras
https://www.notateslaapp.com/news/679/tesla-s-fsd-hardware-4-0-to-use-new-cameras
https://www.sony-semicon.com/en/products/is/automotive/automotive.html
https://www.sony-semicon.com/en/products/is/automotive/automotive.html
https://www.bosch-mobility.com/media/global/solutions/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/multi-camera-system/multi-purpose-camera/summary_multi-purpose-camera_en.pdf
https://www.bosch-mobility.com/media/global/solutions/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/multi-camera-system/multi-purpose-camera/summary_multi-purpose-camera_en.pdf
https://www.bosch-mobility.com/media/global/solutions/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/multi-camera-system/multi-purpose-camera/summary_multi-purpose-camera_en.pdf
https://www.bosch-mobility.com/media/global/solutions/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/multi-camera-system/multi-purpose-camera/summary_multi-purpose-camera_en.pdf
https://www.ovt.com/wp-content/uploads/2022/01/OX08B4C-PB-v1.0-WEB.pdf
https://www.ovt.com/wp-content/uploads/2022/01/OX08B4C-PB-v1.0-WEB.pdf
https://www.mobileye-vision.com/uploaded/eyeq.pdf
https://www.mobileye-vision.com/uploaded/eyeq.pdf

1040 | Nature | Vol 629 | 30 May 2024

Article
30. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc.

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778
(IEEE, 2016).

31. Schaefer, S., Gehrig, D. & Scaramuzza, D. AEGNN: asynchronous event-based graph
neural networks. In Proc. Conference of Computer Vision and Pattern Recognition (CVPR)
12371–12381 (CVF, 2022).

32. Li, Y. et al. Graph-based asynchronous event processing for rapid object recognition.
In Proc. 2021 IEEE/CVF International Conference on Computer Vision (ICCV) 914–923
(IEEE, 2021).

33. Simonovsky, M. & Komodakis, N. Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In Proc. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) 29–38 (IEEE, 2017).

34. Ge, Z., Liu, S., Wang, F., Li, Z. & Sun, J. YOLOX: exceeding YOLO series in 2021. Preprint at
https://arxiv.org/abs/2107.08430 (2021).

35. Fey, M., Lenssen, J. E., Weichert, F. & Müller, H. SplineCNN: fast geometric deep learning
with continuous b-spline kernels. In Proc. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition 869–877 (2018).

36. Messikommer, N. A., Gehrig, D., Loquercio, A. & Scaramuzza, D. Event-based asynchronous
sparse convolutional networks. In Proc. 16th European Conference of Computer Vision
(ECCV) 415–431 (ACM, 2020).

37. Jouppi, N. P. et al. Ten lessons from three generations shaped Google’s TPUv4i: industrial
product. In Proc. 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA) 1–14 (IEEE, 2021).

38. Chen, Nicholas F. Y. Pseudo-labels for supervised learning on dynamic vision sensor data,
applied to object detection under ego-motion. In Proc. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW) 757–709 (IEEE, 2018).

39. Cordone, L., Miramond, B. & Thierion, P. Object detection with spiking neural networks on
automotive event data. In Proc. 2022 International Joint Conference on Neural Networks
(IJCNN) 1–8 (IEEE, 2022).

40. Gehrig, M., Aarents, W., Gehrig, D. & Scaramuzza,D. DSEC: a stereo event camera dataset
for driving scenarios. IEEE Robot. Automat.Lett. 6,4947–4954 (2021).

41. de Tournemire, P., Nitti, D., Perot, E., Migliore, D. & Sironi, A. A large scale event-
based detection dataset for automotive. Preprint at https://arxiv.org/abs/2001.08499
(2020).

42. Orchard, G., Jayawant, A., Cohen, G. K. & Thakor, N. Converting static image datasets to
spiking neuromorphic datasets using saccades. Front. Neurosci. 9, 437 (2015).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://arxiv.org/abs/2107.08430
https://arxiv.org/abs/2001.08499
http://creativecommons.org/licenses/by/4.0/

Methods

In the first step, we will give a general overview of our hybrid neural
network architecture, together with the processing model to generate
high-rate object detections (see section ‘Network overview’). Then we
will provide more details about the asynchronous GNN (see section
‘Deep asynchronous GNN’) and will discuss the new network blocks
that simultaneously push the performance and efficiency of our GNN.
Finally, we will describe how our model is used in an asynchronous,
event-based processing mode (see section ‘Asynchronous operation’).

Network overview
An overview of the network is shown in Extended Data Fig. 1. Our
method processes dense images and sparse events (red and blue dots,
top left) with a hybrid neural network. A CNN branch FI processes each
new image I ∈ H W× ×3R at time tI, producing detection outputs ID and
intermediate features g= { }I

l
I

l

L

=1
G (blue arrows), where l is the layer

index. The GNN branch FE then takes image-based detection outputs,
image features and event graphs constructed from raw events
E ∣e t t t= { < < }i I i E with tI < tE and events ei, as input to generate detections
for each time tE. In summary, the detections at time tE are computed as

D G F I, = () (1)I I
I

F= (, ,), (2)E
E

I ID D G E

In normal operation, equation (1) is executed each time a new image
arrives and essentially generates feature banks D I and G I that are then
reused in equation (2). As will be seen later, FE, being an asynchronous
GNN, can be first trained on full event graphs, and then deployed to
consume individual events in an incremental fashion, with low com-
putational complexity and identical output to the batched form. As a
result, the above equations describe a high-rate object detector that
updates its detections for each new event. In the next section, we will
have a closer look at our new GNN, before delving into the full hybrid
architecture.

Deep asynchronous GNN
Here we propose a new, highly efficient GNN, which we term, deep asyn-
chronous GNN (DAGr). It processes events as spatio-temporal graphs.
However, before we can describe it, we first give some preliminaries
on how events are converted into graphs.

Graph construction. Event cameras have independent pixels that
respond asynchronously to changes in logarithmic brightness L. When-
ever the magnitude of this change exceeds the contrast threshold C,
that pixel triggers an event ei = (xi, ti, pi) characterized by the position xi,
timestamp ti with microsecond resolution and polarity (sign) pi ∈ {−1, 1}
of the change. An event is triggered when

p t t t C[(,) − (, − Δ)] > . (3)i i i i i iL x L x

The event camera thus outputs a sparse stream of events E e= { }i i
N
=0

−1.
As in refs. 31,32,43–45, we interpret events as three-dimensional (3D)
points, connected by spatio-temporal edges.

From these points, we construct the event graph G V E= { , } consist-
ing of nodes V and edges E. Each event ei corresponds to a node. These
nodes Vn ∈i are characterized by their position βt= (,) ∈i

i ip
3Rn x̂ and

node features Rp= ∈i
ifn . Here x̂i is the event pixel coordinate, normal-

ized by the height and width, and ti and pi are taken from the correspond-
ing event. To map ti into the same range as xi, we rescale it by a factor
of β = 10−6. These nodes are connected by edges, (i, j) ∈ E, connecting
nodes ni and nj, each with edge attributes Re ∈ij

de. We connect nodes
that are temporally ordered and within a spatio-temporal distance
from each other:

n ni j E R t t(,) ∈ if − < and < . (4)i j
i jp p ∞∥ ∥

Here ∥ · ∥∞ returns the absolute value of the largest component. For
each edge, we associate edge features n ne r= (−)/2 + 1/2ij xy

j
xy
i . Here,

nxy denote the x and y components of each node, and r is a constant,
such that eij ∈ [0, 1]2. Constructing the graph in this way gives us several
advantages. First, we can leverage the queue-based graph construction
method in ref. 32 to implement a highly parallel graph construction
algorithm on GPU. Our implementation constructs full event graphs
with 50,000 nodes in 1.75 ms and inserts single events in 0.3 ms on a
Quadro RTX 4000 laptop GPU. Second, the temporal ordering con-
straint above makes the event graph directed32,45, which will enable
high efficiency in early layers before pooling (see section ‘Asynchronous
operation’). In this work, we select R = 0.01 and limit the number of
neighbours of each node to 16.

Deep asynchronous GNN. In this section, we describe the function FE
in equation (2). For simplicity, we first describe it without the fusion
terms D I and G I and describe only how processing is performed on
events alone. We later give a complete description, incorporating
fusion.

An overview of our neural network architecture is shown in Extended
Data Fig. 1. It processes the spatio-temporal graphs from the previ-
ous section and outputs object detection at multiple scales (top
right). It consists of five alternating residual layers (Extended Data
Fig. 1c) and max pooling blocks (Extended Data Fig. 1d), followed by a
YOLOX-inspired detection head at two scales (Extended Data Fig. 1e).
Crucially, our network has a total of 13 convolution layers. By contrast,
the methods in ref. 32 and ref. 31 feature only five and seven layers,
respectively, making our network almost twice as deep as the previous
methods. Before each residual layer, we concatenate the x and y coor-
dinates of the node position onto the node feature, which is indicated
by +2 at the residual layer input. Residual layers and the detection head
use the lookup table-based spline convolutions (LUT-SCs) as the basic
building block (Extended Data Fig. 1f). These LUT-SCs are trained as
a standard spline convolution31,35 and later deployed as an efficient
lookup table (see section ‘Asynchronous operation’).
Spline convolutions. Spline convolutions, shown in Extended Data
Fig. 1f, update the node features by aggregating messages from neigh-
bouring nodes:

∑W W e′ = + () , and ′ = . (5)
i i

j i E
ij

j i i
f f

(,)∈
f p pn n n n n

Here n′i
f is the updated feature at node Rn W, ∈i

c c×out in is a matrix that
maps the current node feature ni

f to the output, and W e() ∈ij
c c×out inR is

a matrix that maps neighbouring node features n j
f to the output. In

ref. 35, W(eij) is a matrix-valued smooth function of the edge feature eij.
Remember that the edge features eij ∈ [0, 1]2, which is the domain of
W(eij). The function W(eij) is modelled by a d-order B-spline in m = 2
dimensions with k × k learnable weight matrices equally spaced in [0, 1]2.
During the evaluation, the function interpolates between these learn-
able weights according to the value of eij. In this work, we choose d = 1
and k = 5.
Max pooling. Max pooling, shown in Extended Data Fig. 1d, splits the
input space into gx × gy × gt voxels V and clusters nodes in the same
voxel. At the output, each non-empty voxel has a node, located at the
rounded mean of the input node positions and with its feature equal
to the maximum of the input nodes features.

∑α
α
V

′ = max , and ′ =
1

| |
. (6)i

V

i

i V
f

∈
f p

∈
p

i i

n n n n
n n

Here multiplying by α H W= , , β
1 T

 scales the mean to the original

resolution. To compute the new edges, it forms a union of all edges

Article
connecting the cluster centres and removes duplicates. Formally, the
edge set of the output graph after pooling, E ′pool, is computed as

∣E e e E′ = { ∈ }. (7)c c ijpool i j

Here ci retrieves the index of the voxel in which the node ni resides,
and duplicates are removed from the set. This operation can result in
bidirectional edges between output nodes if at least one node from
voxel A is connected to one of voxel B and vice versa. The combination of
max pooling and position rounding has two main benefits: first, it allows
the implementation of highly efficient LUT-SC, and second, it enables
update pruning, which further reduces computation, discussed in the
section ‘Events only’ under ‘Ablations’. For our pooling layers, we select
(gx, gy, gt)i = (56/2i, 40/2i, 1), where i is the index of the pooling layer. As
seen in this section, selecting gt = 1 is crucial to obtain high performance
because it accelerates the information mixing in the network.
Directed voxel grid pooling. As previously mentioned, the constructed
event graph has a temporal ordering, which means that the edges pass
only from older to newer nodes. Although this property is conserved
in the first few layers of the GNN, after pooling it is lost to a certain
extent. This is because edge pooling, described in equation (7), has the
potential to generate bidirectional edges (Extended Data Fig. 2d, top).
Bidirectional edges are formed when there is at least one edge going
from voxel A to voxel B, and one edge going from voxel B to voxel A, such
that pooling merges them into one bidirectional edge between A and
B. Although bidirectional edges facilitate the distribution of messages
throughout the network and thus boost accuracy, they also increase
computation during asynchronous operation significantly. This is
because bidirectional edges grow the k-hop subgraph that needs to
be recomputed at each layer. In this work, we introduce a specialized
directed voxel pooling, which instead curbs this growth, by eliminat-
ing bidirectional edges from the output, thus creating temporally
ordered graphs at all layers. It does this, by redefining the pooling
operations. Although feature pooling is the same, position pooling
becomes

n n n n
n n

∑α
α
V

′ = max and ′ =
1

| |
. (8)t

i

V
t xy

i

i V
xy

∈ ∈i i

Here we pool the coordinates x and y using mean pooling and
timestamps t with max pooling. We then redefine the edge pooling
operation as

n n∣E e e E′ = { ∈ and > }, (9)c c ij t
c

t
c

dpool i j

j i

where we now impose that edges between output nodes can exist only
if the timestamp of the source node is smaller than that of the destina-
tion node. This condition essentially acts as a filter on the total number
of pooled edges. As will be discussed later, this pooling layer increases
the efficiency, while also affecting the performance. However, we show
that when combined with images (see section ‘Images and events’), this
pooling layer can manifest both high accuracy and efficiency.
Detection head. Inspired by the YOLOX detection head, we design a
series of (LUT-SC, BN and ReLU) blocks that progressively compute a
bounding box regression R∈reg

4f , class score ∈ n
cls

clsf R and object
score f ∈obj R for each output node. We then decode the bounding box
location as in ref. 34 but relative to the voxel location in which the node
resides. This results in a sparse set of output detections.

Now that all components of the GNN are discussed, we will introduce
the fusion strategy that combines the CNN and GNN outputs.

CNN branch and fusion
The CNN branch FI (Extended Data Fig. 1) is implemented as a classical
CNN, here ResNet30, pretrained on ImageNet46, whereas the GNN has
the architecture from the section ‘Deep asynchronous GNN’.

To generate the image features G I used by the GNN, we process the
features after each ResBlock with a depthwise convolution. To gener-
ate the detection output, we also apply a depthwise convolution to the
last two scales of the output before using a standard YOLOX detection
head34. We fuse features from the CNN with those from the GNN with
sparse directed feature sampling and detection adding.

Feature sampling. Our GNN makes use of the intermediate image
feature maps IG using a feature sampling layer (Extended Data Fig. 1b),
which, for each graph node, samples the image feature at that layer at
the corresponding node position and concatenates it with the node
feature. In summary, at each GNN layer, we update the node features
with features derived from IG by taking into account the spatial location
of nodes in the image plane:

̂ ng g= () (10)l
i

l
I i

p

̂ ̂ ∥n ng= , (11)i

l
i i

f f

where ̂ifn is the updated node feature of node ni. Equation (10) samples
image features at each event node location and equation (11) concat-
enates these features with the existing node features. Note that equa-
tions (10) and (11) can be done in an event-by-event fashion.

Detection adding. Finally, we add the outputs of the corresponding
detection heads of the two branches. We do this before the decoding
step34, which applies an exponential map to the regression outputs
and sigmoid to the objectness scores. As the outputs of the GNN-based
and CNN-based detection heads are sparse and dense, respectively,
care must be taken when adding them together. We thus initialize the
detections at tE with ID and then add the detection outputs of the GNN
to the pixels corresponding to the graph nodes. This operation is
also compatible with event-by-event updating of the GNN-based
detections.

Detection adding is an essential step to overcome the limitations of
event-based object detection in static conditions, because then the
RGB-based detector can provide an initial guess even when no events
are present. It also guarantees that in the absence of events, the per-
formance of the method is lower bounded by the performance of the
image-based detector.

Training procedure. Our hybrid method consists of two coupled object
detectors that generate detection outputs at two different timestamps:
one at the timestamp of the image tI and the other after observing events
until time tE (Extended Data Fig. 1). As our labels are collocated with
the image frames, this enables us to define a loss in both instances. We
found that the following training strategy produced the best results:
pretraining the image branch with the image labels first, then freezing
the weights and training the depthwise convolutions and DAGr branch
separately on the event labels.

As both branches are trained to predict detections separately, the
DAGr network essentially learns to update the detections made by the
image branch. This means that DAGr learns to track, detect and forget
objects from the previous view.

Asynchronous operation
As in refs. 31,32,36, after training, we deploy our hybrid neural net-
work in an asynchronous mode, in which instead of feeding full event
graphs, we input only individual events. Local recursive update rules are
formulated at each layer that enforces that the output of the network
for each new event is identical to that of the augmented graph that
includes the old graph and the new event. As seen in refs. 31,32,36, the
rules update only a fraction of the activations at each layer, leading to a
drastic reduction in computation compared with a dense forward pass.

In this section, we will describe the steps that are taken after training
to perform asynchronous processing.

Initialization. The conversion to asynchronous mode happens in three
steps: (1) precomputing the image features; (2) LUT-SC caching and
batch norm fusing; and (3) network activation initialization.

As a first step, when we get an image, we precompute the image fea-
tures by running a forward pass through the CNN and applying the
depthwise convolutions. This results in the image feature banks IG and
detections D I.

In the second step (LUT-SC caching), spline convolutions generate
the highest computational burden in our method because they involve
evaluating a multivariate, matrix-valued function and performing a
matrix–vector multiplication. Following the implementation in ref. 35,
computing a single message between neighbours requires

C d c c c c= (2[+ 1] − 1) + (2 − 1) , (12)m
msg in out in out

floating point operations (FLOPS), in which the first term computes
the interpolation of the weight matrix and the second computes the
matrix–vector product. Here the first term dominates because of the
highly superlinear dependence on d and m. Our LUT-SC eliminates this
term. We recognize that the edge attributes eij depend only on the rela-
tive spatial node positions. As events are triggered on a grid, and the
distance between neighbours is bounded, these edge attributes can
only take on a finite number of possible values. Therefore, instead of
recomputing the interpolated weight at each step, we can precompute
all weight matrices once and store them in a lookup table. This table
stores the relative offsets of nodes together with their weight matrix.
We thus replace the message propagation equation with

∑W W′ = + (13)
i i

j i E
ij

j
f f

(,)∈
fn n n

W x y= LUT(d , d), (14)ij

where dx and dy are the relative two-dimensional (2D) positions of
nodes i and j. Note that this transformation reduces the complexity of
our convolution operation to Cmsg = (2cin − 1)cout, which is on the level of
the classical graph convolution (GC) used in ref. 32. However, crucially,
LUT-SC still retains the relative spatial awareness of spline convolutions,
as Wij change with the relative position and is thus more expressive
than GCs. After caching, we fuse the weights computed above with the
batch norm layer immediately following each convolution, thereby
eliminating its computation from the tally. After pooling, ordinarily,
node positions would not have the property that they lie on a grid any-
more, as their coordinates get set to the centroid location. However,
because we apply position rounding, we can apply LUT-SC caching in
all layers of the network.

In the third step (network activation initialization), before asynchro-
nous processing, we pass a dense graph through our network and cache
the intermediate activations at each layer. Although in convolution
layers we cache the activation, that is, the results of sums computed
from equation (13), in max pooling layers we cache (1) the indices of
input nodes used to compute the output feature for each voxel; (2) a
list of currently occupied output voxels; and (3) a partial sum of node
positions and node counts per voxel to efficiently update output node
positions after pooling.

Update propagation. When a new event is inserted, we compute
updates to all relevant nodes in all layers of the network. The goal
of these updates is to achieve an output identical to the output the
network would have computed if the complete graph with one event
added was processed from scratch. The updates include (1) adding and
recomputing messages in equation (13) if a node position or feature has

changed; (2) recomputing the maximum and node position for output
nodes after each max pooling layer; and (3) adding and flipping edges
when new edges are formed at the input. We will discuss these updates
in the following sections. To facilitate computation, at each layer, we
maintain a running list of unchanged nodes (grey) and changed nodes
(cyan) and whether their position has changed, the feature has changed
or both. The propagation rules are outlined in Extended Data Fig. 2.
Convolution layers. In a convolution layer (Extended Data Fig. 2a), if the
node has a different position (Extended Data Fig. 2a, top), we recompute
that feature of the node and resend a message from that node to all its
neighbours. These are marked as green and orange arrows in Extended
Data Fig. 2a (top row). If instead, only the feature of the node changed
(Extended Data Fig. 2a, bottom), we update only the messages sent
from that node to its neighbours. We can gain an intuition for these
rules from equation (13). A change in the node feature nf changes only
one term in the sum that has to be recomputed. Instead, a node posi-
tion change causes all weight matrices Wij to change, resulting in a
recomputation of the entire sum.
Pooling layers. Pooling layers update only output nodes for which at
least one input node has a changed feature or changed position. For
these output nodes, the position and feature are recomputed using
equation (6). Special care must be taken when using directed voxel
pooling layers. Sometimes it can happen that an edge at the output of
this layer needs to be inverted such that temporal ordering is conserved.
In this case, the next convolution layer must compute two messages
(Extended Data Fig. 2e), one to undo the first message and the other
corresponding to the new edge direction. In this case, two nodes are
changed instead of only one. However, edge inversion happens rarely
and thus does not contribute markedly to computation.

Reducing computation. In this section, we describe various consid-
erations and algorithms for reducing the computation of the two basic
layers described above.
Directed event graph. As previously discussed, using a directed event
graph notably reduces computation, as it reduces the number of nodes
that need to be updated at each layer. We illustrate this concept in
Extended Data Fig. 2c, in which we compare update propagation in
graphs that are directed or possess bidirectional edges. Note that
we encounter directed graphs either at the input layer (before the
first pooling) or after directed voxel pooling layers. Instead, graphs
with bidirectional edges are encountered after regular voxel pooling
layers. As seen in Extended Data Fig. 2c (top), directed graphs keep the
number of messages that need to be updated in each layer constant,
as no additional nodes are updated at any layer. Instead, bidirectional
edges send new messages to previously untouched nodes, leading
to a proliferation of update messages, and as a result, computation.
Update pruning. Even when input nodes to a voxel pooling layer change,
the output position and feature may stay the same, even after recom-
putation. If this is the case, we simply terminate propagation at that
node, called update pruning, and thus save significantly in terms of
computation. We show this phenomenon in Extended Data Fig. 2b.
This can happen when (1) the rounding operation in equation (6)
simply rounds a slightly updated position to the same position as
before; and (2) the maximal features at the output belong to input
nodes that have not been updated. Let us state the second condition
more formally. Let n′f j

i
, be the jth entry of the feature vector belonging

to the ith output node. Now let

n n
n

= arg max (15)
k

V
j

∈
f,

i

j
i

be the input node for which the feature nf,j at the jth position is maximal.
The index k j

i selects this node from the voxel Vi. Thus, we may rewrite
the equation for max pooling for each component as

n n′ = . (16)j
i

j
k

f, f,
j

i

Article
This means that essentially, only a subset of input nodes in the voxel

contributes to the output, and this subset is exactly

∣P n j c V= { = 0, . . . , − 1} ⊂ . (17)i
k

i
j

i

Moreover, as these nodes are indexed by j, and the k j
i could repeat,

we know that the size of this subset satisfies P∣ ∣ c≤i , where c is the num-
ber of features. We thus find that output features do not change if
none of the changed inputs nodes to a given output node are within
the set Pi.

Thus, for each output node, we check the following conditions
to see if update pruning can be performed. For all input nodes that
have a changed position or feature, we check if (1) the changed node
is currently in the set of unused nodes (greyed out in Extended Data
Fig. 2b); (2) the changed feature of the node does not beat the cur-
rent maximum at any feature index; and (3) its position change did
not deflect the average output node position sufficiently to change
rounding. If not all three conditions are met, we recompute the output
feature for that node, otherwise, we prune the update and skip the
computation in the lower layers. Skipping happens surprisingly often.
In our case, we found that 73% of updates are skipped because of this
mechanism. This also motivated us to place the max pooling layer in
the early layers, as it has the highest potential to save computation.
In a later section, we will show the impact these features have on the
computation of the method.
Simplification of concatenation operation. During feature fusion in the
hybrid network, owing to the concatenation of node-level features with
image features (equation (11)), the number of intermediate features
at the input to each layer of the GNN increases. This would essentially
increase the computation of these layers. However, we apply a simplifi-
cation, which significantly reduces this additional cost. Note that from
equation (13) the output of the layer after the concatenation becomes

∥ ∥

∑

∑

∑ ∑

∑ ∑

W W

W g W g

W g W W g W

W g W g W W

′ = +

= [] + []

= + + +

= + + + .

(18)

i i

j i E
ij

j

l
i i

j i E
ij l

j j

g
l
i i

j i E
ij
g

l
j

j i E
ij

j

g
l
i

j i E
ij
g

l
j i

j i E
ij

j

f f
(,)∈

f

f
(,)∈

f

f
f

(,)∈ (,)∈

f
f

(,)∈

affected by change

f
f

(,)∈

f
f

affected by and changep p f

� ���������� ���������� � ��������� ����������

� �

� �

� �

� �

n n n

n n

n n

n n

n n n

In the equation above, we made use of the fact that weight matrix
∥W W W= []ij ij

g
ij
f and thus multiplication results in the sum of products

̂W gij
g

l
i and W ij

f
fn . Note that this simplification does not imply that a

similar operation could be performed with a pure depthwise convolu-
tion and addition of features, as the weight matrices Wij change for
each neighbour. During asynchronous operation, the terms on the left
need to be recomputed when there is a node position change, and the
terms on the right need to be recomputed when there is a node position
or node feature change. At most one node experiences a node position
change in each layer, and thus the terms on the left do not need to be
recomputed often.

Datasets
Purely event-based datasets. We evaluate our method on the
N-Caltech101 detection42, and the Gen1 Detection Dataset41.
N-Caltech101 consists of recording by a DAVIS240 (ref. 17) undergo-
ing a saccadic motion in front of a projector, projecting samples of
Caltech101 (ref. 47) on a wall. In post-processing, bounding boxes
around the visible boxes were hand placed. The Gen1 Detection Data-
set is a more challenging, large-scale dataset targeting an automo-
tive setting. It was recorded with an ATIS sensor48 with a resolution of
304 × 240, two classes, 228,123 annotated cars and 27,658 annotated

pedestrians. As in ref. 19, we remove bounding boxes with diagonals
below 30 and sides below 20 pixels from Gen1.

Event- and image-based dataset. We curate a multimodal dataset
for object detection by using the DSEC40 dataset, which we term DSEC-
Detection. A preview of the dataset can be seen in Extended Data Fig. 6a.

It features data collected from a stereo pair of Prophesee Gen3 event
cameras and FLIR Blackfly S global shutter RGB cameras recording at
20 fps. We select the left event camera and left RGB camera and align
the RGB images with the distorted event camera frame by infinite depth
alignment. Essentially, we first undistort the camera image, then rotate
it into the same orientation as the event camera and then distort the
image. The resulting image features only a maximal disparity of roughly
6 pixels for close objects at the edges of the image plane owing to the
small baseline (4.5 cm). As object detection is not a precise per-pixel
task, this kind of misalignment is sufficient for sensor fusion.

To create labels, we use the QDTrack49,50 multiobject tracker to anno-
tate the RGB images, followed by a manual inspection and removal of
false detections and tracks. Using this method, we annotate the official
training and test sets of DSEC40. Moreover, we label several sequences
for the validation set and one complex sequence with pedestrians for
the test set. We do this because the original dataset split was chosen
to minimize the number of moving objects. However, this excludes
cluttered scenes with pedestrians and moving cars. By including these
additional sequences, we thus also address more complex and dynamic
scenes. A detailed breakdown and comparison of the number of classes,
instances per class and the number of samples are given in Extended
Data Fig. 6b. Our dataset is the only one to feature images and events and
consider semantic classes, to the best of our knowledge. By contrast,
refs. 19,41 have only events, and ref. 51 considers only moving objects,
that is, does not provide class information, or omits stationary objects.

Statistics of edge cases. We compute the percentage of edge cases
for the DSEC-Detection dataset. We will define an edge case as an
image that contains at least one appearing or disappearing object,
which presumably would be missed by using a purely image-based
algorithm. We found that this proportion is 31% of the training set and
30% of the test set. Moreover, we counted the number of objects that
suddenly appear or disappear. We found that in the training set, 4.2%
of objects disappear and 4.2% appear, whereas in the test set, 3.5%
appear and 3.5% disappear.

Comments on time synchronization. Events and frames were hard-
ware synchronized by an external computer that sent trigger signals
simultaneously to the image and event sensor. While the image sensor
would capture an image with a fixed exposure on triggering, the event
camera would record a special event that exactly marked the time of
triggering. We assign the timestamp of this event (and half an exposure
time) to the image. We found that this synchronization accuracy was
of the order of 78 μs, which we determined by measuring the mean
squared deviation of the frame timestamps from a nominal 50,000 μs.
More details can be found in ref. 40.

Comments on network and event transport latencies. As discussed
earlier, we estimate the mean synchronization error of the order of
78 μs with hardware synchronization. Moreover, in a real-time system,
the event camera will experience event transport delays that are split
into a maximal sensor latency, MIPI to USB transfer latency and a USB
to computer transfer latency, as discussed in ref. 52. For the Gen3 sen-
sor, the sum of all worst-case latencies can be as low as 6 ms. It can be
further reduced by using directly an MIPI interface in which case this
latency reduces to 4 ms. However, this worst-case delay is achieved only
during static scenarios, in which there is an exceptionally low event rate
such that MIPI packets are not filled sufficiently. However, this case is
rarely achieved because of the presence of sensor noise and also does

not affect dynamic scenarios with high event rates. More details can
be found in ref. 53. Finally, note that although all three latencies would
affect a closed-loop system, our work is evaluated in an open loop and
thus does not experience these latencies, or synchronization errors
due to these latencies.

In view of integrating our method into a multi-sensor system, which
uses the network-based time synchronization standard IEEE1588v2, we
analyse how the method performs when small synchronization errors
between images and events are present. To test this, we introduce a fixed
time delay Δtd ∈ [−20, 20] ms between the event and image stream. Note
that for a given stimulus a delay of Δtd < 0 denotes that events arrive
earlier than images, whereas Δtd > 0 denotes that events arrive later
than images. We report the performance of DAGr-S + ResNet-50 on
the DSEC-Detection test set in Extended Data Fig. 3b. As can be seen,
our method is robust to synchronization errors up to 20 ms, suffering
only a maximal performance decrease of 0.5 mAP. Making our method
more robust to such errors remains the topic of further work.

Comment on event-to-image alignment. Throughout the dataset,
event-to-image misalignment is small and never exceeds 6 pixels,
and this is further supported by visual inspection of Extended Data
Fig. 6a. Nonetheless, we characterize the accuracy that a hypotheti-
cal decision-making system would have if worst-case errors were
considered. Consider a decision-making system that relies on accu-
rate and low-latency positioning of actors such as cars and pedes-
trians. This system could use the proposed object detector (using
the small-baseline stereo setup with an event and image camera) as
well as a state-of-the-art event camera-based stereo depth method54
(using the wide-baseline stereo event camera setup) to map a con-
servative region around a proposed detection. This system would
still have a low latency and provide a low depth uncertainty because
of a low disparity error of 1.2–1.3 pixels, characterized on DSEC
in ref. 40.

We can calculate the depth uncertainty due to the stereo system
as σ σ=D

D
fb d

2

w
. With a maximal disparity uncertainty σd = 1.3 pixels, the

depth D at 3 m, the focal length at f = 581 pixels and the event camera
to event camera baseline at bw = 50 cm. This results in a depth uncer-
tainty of σD = 4 cm. Likewise, the lateral positioning uncertainty (due
to shifted events) is σ σ=l

D
f d.

For lateral positioning, we can assume a disparity error that is
bounded by the misalignment between events and frames, which is
σ <

fb
Dd

s where bs = 4.5 cm is the small baseline between the event
and image camera. Inserting this uncertainty, the resulting lateral
uncertainty is bounded by σ σ b= < =D

f
D
f

fb
Dp d s

s , which means σp < 4.5 cm.
These numbers are well within the tolerance limits of automotive sys-
tems that typically expect a 3% of distance to target uncertainty, which
for 3 m would be 9 cm. Moreover, this lies within the tolerance limit of
the current agent-forecasting methods10–12 that are currently finding
their way into commercial patents13, in which we see displacement
errors in prediction of the order of 0.6 m, more than one order of mag-
nitude higher than the worst-case error of our system.

Finally, we argue that despite the misalignment, our object detector
learns to implicitly realign events to the image frame because of the
training setup. As the network is trained with object detection labels
that are aligned with the image frame, and slightly misaligned events,
the network learns to implicitly realign the events to compensate for
the misalignment. As the misalignment is small, this is simple to learn.
To test this hypothesis, we used the LiDAR scans in DSEC to align the
object detection labels with the event stream, that is, in the frame it
was not trained for, and observed a performance drop from 41.87 mAP
to 41.8 mAP. First, the slight performance drop indicates that we are
moving the detection labels slightly out of distribution, thus confirm-
ing that the network learns to implicitly apply a correction alignment.
Second, the small magnitude of the change highlights that the mis-
alignment is small.

Ground truth generation for inter-frame detection. To evaluate our
method between consecutive frames, we generate ground truth as
follows. We generate ground truth for multiple temporal offsets tΔi

n
with n = 10 and i = 0, …, 10 and Δt = tE − tI = 50 ms. We then remove the
samples from our dataset in which two consecutive images do not share
the same object tracks and generate inter-frame labels by linearly
interpolating the position (x and y coordinates of the top left bounding
box corner) and size (height and width) of each object. We then
aggregate detection evaluations at the same temporal offset across
the dataset.

Comment on approximation errors due to linear interpolation. To
measure the inter-frame detection performance of our method, we use
linear interpolation between consecutive frames to generate ground
truth. Although this linear interpolation affects ground truth accuracy
within the interval because of interpolation errors, at the frame borders,
that is, t = 0 ms and t = 50 ms, no approximation is made. Still, we verify
the accuracy of the ground truth by evaluating our method for different
interpolation methods. We focus on the subset that has object tracks
that have a length of at least four and then apply cubic and linear inter-
polation of object tracks on the interval between the second and third
frames. We report the results in Extended Data Fig. 3a. We see that the
performance of our method deviates at most 0.2 mAP between linear
and cubic interpolations. Although there is a small difference, we focus
on using linear interpolation, as it allows us to use a larger subset of the
test set for inter-frame object detection.

Training details
On Gen1 and N-Caltech101, we use the AdamW optimizer55 with a
learning rate of 0.01 and weight decay of 10−5. We train each model for
150,000 iterations with a batch size of 64. We randomly crop the events
to 75% of the full resolution and randomly translate them by up to 10%
of the full resolution. We use the YOLOX loss34, which includes an IOU
loss, class loss and a regression loss, discussed in ref. 34. To stabilize
training, we also use exponential model averaging56.

On DSEC-Detection, we train with a batch size of 32, the learning rate
of 2 × 10−4 for 800 epochs using the AdamW optimizer55, as before.
Apart from the data augmentations described before, we now also use
random horizontal flipping with a probability of 0.5 and random mag-
nification with a scale s ~ (1, 1.5)U . We train the network to predict with
one image and 50 ms of events leading up to the next image, corre-
sponding to the frequency of labels (20 Hz).

Baselines
In the purely event-based setting, we compare with the following
state-of-the-art methods.

Dense recurrent methods. In this category, RED (ref. 19) and ASTM-Net
(ref. 28) are the state-of-the-art methods, and they feature recurrent
architectures. We also include MatrixLSTM + YOLOv3 (ref. 29) that
features a recurrent, learnable representation and a YOLOv3 detec-
tion head.

Dense feedforward methods. Reference 28 provides the results on
Gen1 for the dense feedforward methods, which we term Events + RRC
(ref. 38), Inception + SDD (ref. 26) and Events + YOLOv3 (ref. 27). These
methods use dense event representations with the RRC, SSD or YOLOv3
detection head.

Spiking methods. We compare with the spiking network Spiking
DenseNet (ref. 39), which uses an SSD detection head.

Asynchronous methods. Here we compare with the state-of-the-art
methods AEGNN (ref. 31) and NVS-S (ref. 32), both graph-based, AsyNet
(ref. 36), which uses submanifold sparse convolutions57, and YOLE

Article
(ref. 58), which uses an asynchronous CNN. All of these methods deploy
their networks in an asynchronous mode during testing.

As implementation details are not available for Events + RRC (ref. 38),
Inception + SDD (ref. 26) and Events + YOLOv3 (ref. 27), MatrixLSTM + 
YOLOv3 (ref. 29) and ASTM-Net (ref. 28), we find a lower bound on the
per-event computation necessary to update their network based on the
complexity of their detection backbone. Whereas for Events + YOLOv3
and MatrixLSTM + YOLOv3 we use the DarkNet-53 backbone, for
ASTM-Net and Events + RRC, we use the VGG11 backbone, and for
Inception + SDD the Inception v.2 backbone. As Spiking DenseNet
uses spike-based computation, we do not report FLOPS because they
are undefined and mark that entry with N/A.

Hybrid methods. In the event- and image-based setting, we addition-
ally compare with an event- and frame-based baseline, which we term
Events + YOLOX. It takes in concatenated images and event histograms59
from events up to time t and generates detections for time t.

Image-based methods. We compare with YOLOX (ref. 34). As YOLOX
provides only detections at frame time, we present a variation that can
provide detections in the blind time between the frames, using either
constant or linear extrapolation of detections extracted at frame time.
Whereas for constant extrapolation we simply keep object positions
constant over time, for linear extrapolation we use detections in the
past and current frames to fit a linear motion model on the position,
height and width of the object. As YOLOX is an object detector, we
need to establish associations between the past and current objects.
We did this as follows: for each object in the current frame, we selected
the object of the same class in the previous frame with the highest IOU
overlap and used it to fit a linear function on the bounding box param-
eters (height, width, x position and y position). If no match was found
(that is, all IOUs were 0 for the selected object), it was not extrapolated
but instead kept constant.

Finally, we compare the bandwidth and latency requirements of the
Prophesee Gen3 camera with those of a set of automotive cameras,
which are summarized in Extended Data Table 2. We also illustrate the
concept of bandwidth–latency trade-off in Fig. 1a. The bandwidth–
latency trade-off, discussed in ref. 60, states that cameras such as the
automotive cameras in Extended Data Table 2 cannot simultaneously
achieve low bandwidth and low latency because of the reliance of a
frame rate. By contrast, the Prophesee Gen3 camera can minimize both
because it is an asynchronous sensor.

Related work
Dense neural network-based methods. Since the introduction of
powerful object detectors in classical image-based computer vision,
such as R-CNN (refs. 61–63), SSD (ref. 64) and the YOLO series34,65,66,
and the widespread adoption of these methods in automotive settings,
event-based object detection research has focused on leveraging the
available models on dense, image-like event representations19,26–29,38.
This approach enables the use of pretraining, and well-established
architecture designs and loss functions, while maintaining the adv-
antages of events, such as their high dynamic range, and negligible
motion blur. Most recent examples of these methods include RED
(ref. 19) and ASTM-Net (ref. 28), which operate recurrently on events
and have shown high performance on detection tasks in automotive set-
tings. However, owing to the nature of their method, these approaches
necessarily need to convert events into dense frames. This invariably
sacrifices the efficiency and high temporal resolution present in the
events, which are important in many application scenarios such as
low-power, always-on surveillance67,68 and low-latency, low-power
object detection and avoidance3,69.

Geometric learning methods. As a result, a parallel line of research has
emerged that tries to reintroduce sparsity into the present models by

adopting either spiking neural network architectures39 or geometric
learning approaches31,36. Of these, spiking neural networks are capa-
ble of processing raw events asynchronously and are thus closest in
spirit to the event-based data. However, these architectures lack effi-
cient learning rules and thus do not yet scale to complex tasks and
datasets42,70–74. Recently, geometric learning approaches have filled
this gap. These approaches treat events as spatio-temporal point
clouds75, submanifolds36 or graphs31,32,43,76 and process them with
specialized neural networks. Particular instances of these meth-
ods that have found use in large-scale point-cloud processing are
PointNet++ (ref. 77) and Flex-Conv (ref. 78). These methods retain
the spatio-temporal sparsity in the events and can be implemented
recursively, in which single-event insertions are highly efficient.

Asynchronous GNNs. Of the geometric learning methods, processing
events with GNNs is found to be most scalable, achieving high per-
formance on complex tasks such as object recognition32,43,44, object
detection31 and motion segmentation45. Recently, a line of research31,32
has focused on converting these GNNs, once trained, into asynchro-
nous models. These models can process in an event-by-event fashion
while maintaining low computational complexity and generating an
identical output to feedforward GNNs. They do so, by efficiently insert-
ing events into the event graph32, and then propagating the changes to
lower layers, for which at each layer only a subset of nodes needs to be
recomputed. However, these works are limited in three main aspects.
First, they work only at a per node level, meaning that they flag nodes
that have changed and then recompute the messages to recompute
the feature of each node. This incurs redundant computation because
effectively only a subset of messages passing to each changed node
need to be recomputed. Second, they do not consider update pruning,
which means that when node features do not change at a layer, they
simply treat them as changed nodes, leading to additional computa-
tion. Finally, the number of changed nodes increases as the layer depth
increases, meaning that these architectures work efficiently only for
shallow neural networks, limiting the depth of the network.

In this work, we address all three limitations. First, we pass updates
on a per-message level, that is, we recompute only messages that have
changed. Second, we apply update pruning and explore a specialized
network architecture that maximizes this effect by placing the max
pooling layer early in the network. By modulating the number of out-
put features of this layer, we can control the amount of pruning that
takes place. Finally, we also apply a specialized LUT-SC that cuts the
computation markedly. With the reduced computational complexity,
we are able to design two times deeper architectures, which markedly
boosts the network accuracy.

Hybrid methods. One of the reasons for the lower performance of event-
based detectors also lies in the properties of the sensor itself. Although
possessing the capability to detect objects fast and in high-speed and
high-dynamic-range conditions, the lack of explicit texture informa-
tion in the event stream prevents the networks from extracting rich
semantic cues. For this reason, several methods have combined events
and frames for moving-object detections79, tracking80, computational
photography22,81,82 and monocular depth estimation40. However, these
are usually based on dense feedforward networks and simple event
and image concatenation22,82–84 or multi-branch feature fusion40,83. As
events are treated as dense frames, these methods suffer from the same
drawbacks as standard dense methods. In this work, we combine events
and frames in a sparse way without sacrificing the low computational
complexity of event-by-event processing. This is, to our knowledge, the
first paper to address asynchronous processing in a hybrid network.

Ablations
Events only. Here we motivate the use of the features of our method. We
split our ablation studies into two parts: those targeting the efficiency

(Extended Data Fig. 4d) and those targeting the accuracy (Extended
Data Fig. 4e) of the method. For all experiments, we use the model shown
in Extended Data Fig. 1 without the image branch as a baseline and
report the standard object detection score of mAP (higher is better)85
on the validation set of the Gen1 dataset41 as well as the computation
necessary to process a single event in terms of floating point operations
per event (FLOPS per event, lower is better).
Ablations on efficiency. Key building blocks of our method are LUT-SCs,
which are an accelerated version of standard spline convolutions35. An
enabling factor for using LUT-SCs lies in transitioning from 2D to 3D
convolutions, which we investigate by training a model with 3D spline
convolutions (Extended Data Fig. 4d, row 1). With an mAP of 31.84, it
achieves a 0.05 lower mAP than our baseline (bottom row). Using 3D
convolutions yields a slight decrease in accuracy and does not allow
us to perform an efficient lookup, yielding 150.87 MFLOPS per new
event. Using 2D convolutions (row 2) reduces the computation to 79.6
MFLOPS per event because of the dependence on the dimension d in
equation (12), which is further reduced to 17.3 MFLOPS per event after
implementing LUT-SCs (row 3). In addition to the small increase in
performance due to 2D convolutions, we gain a factor of 8.7 in terms
of FLOPS per event.

Next, we investigate pruning. We recompute the FLOPS of the previ-
ous model by terminating update propagation after max pooling layers,
shown in Extended Data Fig. 2b, and reported in Extended Data Fig. 4d
(row 4). We find that this reduces the computational complexity from
17.3 to 16.3 MFLOPS per event. This reduction comes from removing
the orange messages in Extended Data Fig. 2a (bottom). Implement-
ing node position rounding in equation (6) (Extended Data Fig. 4d,
row 5), enables us to fully prune updates. This method only requires
4.58 MFLOPS per event. Node position rounding reduces mAP only by
0.01, justifying its use.

In a final step, we also investigate the use of directed pooling, shown
in Extended Data Fig. 2d. Owing to this pooling method, fewer edges are
present after each pooling layer, thus restricting the message passing—
that is, context aggregation abilities of our network. For this reason,
it achieves only an mAP of 18.35. However, owing to the directedness
of the graph, in each layer at most only one node needs to be updated
(except for rare edge inversions), as shown in Extended Data Fig. 2c,
leading to an overall computational complexity of only 0.31 MFLOPS
per event. Owing to the lower performance, we instead use the previous
method when comparing with the state-of-the-art methods. However,
as will be seen later, the performance is affected to a much lesser degree
when combined with images.
Ablations on accuracy. We found that three features of our network
had a marked impact on performance. First, we applied early tempo-
ral aggregation, that is, using gt = 1, which sped up training and led to
higher accuracy. We trained another model that pooled the temporal
dimension more gradually by setting gt = 8/2i, where i is the index of
the pooling layer. This model reached only an mAP of 21.2 (Extended
Data Fig. 4e, row 3), after reducing the learning rate to 0.002 to enable
stable training. This highlights that early pooling plays an important
part because it improves our result by 10.6 mAP. We believe that it is
important for mixing features quickly so that they can be used in lower
layers.

Next, we investigate the importance of network depth on task perfor-
mance. To see this, we trained another network, in which we removed
the skip connection and second (LUT-SC and BN) block from the layer
in Extended Data Fig. 1c, which resulted in a network with a total of
eight layers, on par with the network in ref. 31, which had seven layers.
We see that this network achieves only an mAP of 22.5 (Extended Data
Fig. 4e, row 2) highlighting the fact that 9.4% in mAP is explained by a
deeper network architecture. We also combine this ablation with the
previous one about early pooling and see that the network achieves only
15.8 mAP, another drop of 6.7% mAP (Extended Data Fig. 4e, row 1). This
result is on par with the result in ref. 31, which achieved a performance

of 16.3 mAP, on par with our method. This highlights the importance
of using a deep neural network to boost performance.

Finally, we investigate using multiple layers before the max poo
ling layer. We train another model that only has a single-input layer,
replacing the layer in Extended Data Fig. 1 with a (LUT-SC, BN and ReLU)
block. This yielded a performance of 30.0 mAP (Extended Data Fig. 4e,
row 4), which is 1.8 mAP lower than the baseline (Extended Data Fig. 4e,
row 5). The computational complexity is only marginally lower, which
is explained by Extended Data Fig. 2c (top). We see that adding layers
at the input generates only a few additional messages. This highlights
the benefits of using a directed event graph.
Timing experiments. We compare the time it takes for our dense GNN
to process a batch of 50,000 events averaged over Gen1, and compare
it with our asynchronous implementation on a Quadro RTX 4000 lap-
top GPU. We found that our dense network takes 30.8 ms, whereas
the asynchronous method requires 8.46 ms, a 3.7-fold reduction. We
believe that with further optimizations, and when deployed on poten-
tially spiking hardware, this method can reduce power and latency by
additional factors.

Max pooling. In this section, we take a closer look at the pruning
mechanism. We find that almost all pruning happens in the very
first max pooling layer. This motivates the placement of the pooling
layer at the early stages of the network, which allows us to skip most
computations when pruning happens. Also, as the subgraph is still
small in the early layers, it is easy to prune the entire update tree.
We interpret this case as event filtering and investigate this filter in
Extended Data Fig. 4.

When applied to raw events (Extended Data Fig. 4a), we obtain
filtered events (Extended Data Fig. 4b), that is, events that passed
through the first max pooling layer. We observe that max pooling
makes the events more uniformly distributed over the image plane.
This is also supported by the density plot in Extended Data Fig. 4b,
which shows that the distribution of the number of events per-pixel
shifts to the left after filtering, removing events in regions in which
there are too many. This behaviour can be explained by the pigeon-hole
principle when applied to max pooling layers. Max pooling usually
uses only a fraction of its input nodes to compute the output feature.
The number of input nodes used by the max pooling layer is upper
bounded by its output channel dimension, cout, because it could at
maximum use only one feature from each input node. As a result, max
pooling selects at most cout nodes for each voxel, resulting in more
uniformly sampled events.

To study the effect of the output channel dimension on filtering, we
train four models with cout ∈ {8, 16, 24, 32}, in which our baseline model
had cout = 16. We report the mAP, MFLOPS per event and fraction of
events after filtering, ϕ averaged over Gen1, in Extended Data Fig. 4c.
As predicted, we find that increasing cout increases mAP, MFLOPS and
ϕ. However, the increase happens at different rates. While MFLOPS
and ϕ grow roughly linearly, mAP growth slows down significantly
after c = 24. Interestingly, by selecting cout = 8 we still achieve an mAP
of 30.6, while using only 21% of events. This type of filtering has inter-
esting implications for future work. An interesting question would be
whether events that are not pruned carry salient and interpretable
information.

Images and events. In this section, we ablate the importance of differ-
ent design choices when combining events and images. In all experi-
ments, we report the mAP and mean number of MFLOPS per newly
inserted event over the DSEC-Detection validation set. When comput-
ing the FLOPS, we do not take into account the computation necessary
by the CNN, because it needs to be executed only once. Our baseline
model uses DAGr-S for the events branch and ResNet-18 (ref. 30).
Ablations on fusion. In the following ablation studies, we investigate the
influence of (1) the feature sampling layer and (2) the effect on detection

Article
adding at the detection outputs of an event and image branch. We
summarize the results of this experiment in Extended Data Fig. 5d.
In summary, we see that our baseline (Extended Data Fig. 5d, row 4)
achieves an mAP of 37.3 with 6.73 MFLOPS per event. Removing feature
sampling results in a drop of 3.1 mAP, while reducing the computational
complexity by 0.73 MFLOPS per event. We argue that the performance
gain due to feature sampling justifies this small increase in computa-
tional complexity. Removing detection adding at the output reduces
the performance by 5.8 mAP, while also reducing the computation
by 1.24 MFLOPS per event. We argue that this reduction comes from
the fact that the image features are predominantly used to generate
the output (that is, compared with the events only, which is 18.5 mAP
lower), and thus more event features are pruned at the max pooling
layer (roughly 20% more). Finally, if both feature sampling and detec-
tion adding are removed, we arrive at the original DAGr architecture,
which achieves an mAP of 14.0 with 6.05 MFLOPS per event. It has a
computational complexity on par with the baseline with detection
adding, but with a performance of 20.2 mAP lower, justifying the use
of detection adding.
Other ablations. We found that two more factors helped the perfor-
mance of the method without affecting the computation markedly:
(1) CNN pretraining and (2) concatenation of image and event features
that we ablate in Extended Data Fig. 5e. To test the first feature, we
train the model end to end, without pretraining the CNN branch, and
found that it resulted in a 0.2-mAP reduction in performance, with a
negligible reduction in computational complexity. Next, we replaced
the concatenation operation with a summation, which reduces the
number of input channels to each spline convolution. This change
reduces the mAP by 0.5 mAP and the computation by 1.24 MFLOPS per
event. Instead, naive concatenation requires 7.49 MFLOPS per event
without the simplifications in equation (18). If we use equation (18),
we can reduce this computation to 6.74 MFLOPS per event, a roughly
10% reduction with no performance impact.
Ablation on CNN backbone. We evaluate the ability of our method to
perform inter-frame detection using different network backbones,
namely, ResNet-18, ResNet-34 and ResNet-50, and provide the results
in Extended Data Fig. 5a. Green and reddish colours indicate with and
without events, respectively. As seen previously with the ResNet-50
backbone event and image-based methods (green), all show stable
performance, successfully detecting objects in the 50 ms between two
frames. As the backbone capacity increases, their performance level
also increases. We also observe that with increasing time t ranging
from 0 ms to 50 ms, all methods slightly increase, reach a maximum
and then decrease again, improving the initial score at t = 0 by between
0.6 mAP and 0.7 mAP. The performance increase can be explained
because of the addition of events, that is, more information becomes
available so that detections can be refined, especially in the dark and
blurry regions of the image. The subsequent slight decrease can then be
explained by the fact that image information becomes more outdated.
By contrast, purely image-based methods (red) suffer significantly
in this setting. While starting off at the same level as the image and
event-based methods, they quickly degrade by between 8.7 mAP and
10.8 mAP after 50 ms. The performance change over time for all meth-
ods is shown in Extended Data Fig. 5c, in which we confirm our findings.
This decrease highlights the importance of updating the prediction
between the frames. Using events is an effective and computationally
cheap way to do so, closing the gap of up to 10.8 mAP. We illustrate this
gain in performance by using events qualitatively in Fig. 5, in which we
show object detections of DAGr-S + ResNet-50 in edge-case scenarios.
Timing experiments. We report the runtime of our method in Extended
Data Table 1 and find the fastest method to be DAGr-S + ResNet50 with
9.6 ms. Specific hardware implementations are likely to reduce this
number substantially. Moreover, as can be seen in the comparison,
MFLOPS per event does not correlate with runtime at these low compu-
tation regimes, and this indicates that significant overhead is present

in the implementation. We use the PyTorch Geometric86 library, which
is optimized for batch processing, and thus introduces data handling
overhead. When eliminating this overhead, runtimes are expected to
decrease even more.

Further experiments on DSEC-Detection
Event cameras provide additional information. One of the proposed
use cases for an event camera is to detect objects before they become
fully visible within the frame. These could be objects, or parts of objects,
appearing from behind occlusions, or entering the field of view. In this
case, the first image does not carry sufficient information to make
an informed decision, which requires waiting for information from
additional sensors, or integrating context-enriched information from
details such as shadows and body parts. Integrating this information
can reduce the uncertainties in partially observable situations and is
applicable to both image- and event-based algorithms. Event cameras,
however, provide additional information, which invariably enhances
prediction, even under partial observability (for example, an arm appe-
aring from behind an occlusion or a cargo being lost on a highway).
To test this hypothesis, we compared our method with the image-based
baseline with extrapolation on the subset of DSEC-Detection in which
objects suddenly appear or disappear (a total of 8% of objects). This sub-
set requires further information to fill in these detections. Our event-
and image-based method achieves 37.2 mAP, and the image-based
method achieves 33.8 mAP, showing that events can provide a 3.4-mAP
boost in this case.

Incorporating CNN latency into the prediction. Our hybrid method
relies on dense features provided by a standard CNN, which is compu-
tationally expensive to run. We thus try to understand if our method
would also work in a scenario in which dense features appear only after
computation is finished and then need to be updated by later events. To
test this case, we perform the following modification to our method.
After a computation time Δt for computing the dense features, we in-
tegrate the events from the interval [Δt, 50 ms] into the detector. This
means that for time 0 < t < Δt, no detection can be made, as no features
are available from images. In this interval, either the event-only method
from Extended Data Fig. 5d (row 1) can be used, or a linear propaga-
tion from the detection from the previous interval. At time t > Δt, we
use the events in interval [Δt, t]. The runtimes for the different image
networks (ResNet-18, ResNet-34 and ResNet-50 + detection head) were
5.3 ms, 8.2 ms and 12.7 ms, respectively, on a Quadro RTX 4000 laptop
GPU. We report the results in Extended Data Fig. 3c. We see that on the
full DSEC-Detection test set after 50-ms events, DAGr-S + ResNet-50
achieves a performance of 41.6 mAP, 0.3 mAP lower than without
latency consideration. On the inter-frame detection task, this translates
to a reduction from 44.2 mAP to 43.8 mAP, still 6.7 mAP higher than the
image-based baseline with extrapolation implemented. This demon-
strates that our method outperforms image-based methods even when
considering computational latency due to CNN processing. For smaller
networks ResNet-34 and ResNet-18, the degradations on the full test set
are 0.1 mAP and 0.1 mAP, respectively, compared with the correspond-
ing methods without latency consideration. Notably, smaller networks
have lower latency and thus incur smaller degradations. However, the
largest model still achieves the highest performance. Nonetheless, to
minimize the effect of this latency, future work could consider incor-
porating the latency into the training loop, in which case the method
will probably learn to compensate for it.

Research ethics
The study has been conducted in accordance with the Declaration of
Helsinki. The study protocol is exempt from review by an ethics commit-
tee according to the rules and regulations of the University of Zurich,
because no health-related data have been collected. The participants
gave their written informed consent before participating in the study.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request.

Code availability
The open-source code can be found at GitHub (https://github.com/
uzh-rpg/dagr) and the instructions to download the DSEC-Detection
can be found at GitHub (https://github.com/uzh-rpg/dsec-det).

43. Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E. & Andreopoulos, Y. Graph-based object
classification for neuromorphic vision sensing. In Proc. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV) 491–501 (IEEE, 2019).

44. Deng, Y., Chen, H., Liu, H. & Li, Y. A voxel graph CNN for object classification with event
cameras. In Proc. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) 1162–1171 (IEEE, 2022).

45. Mitrokhin, A., Hua, Z., Fermuller, C. & Aloimonos, Y. Learning visual motion segmentation
using event surfaces. In Proc. 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) 14402–14411 (IEEE, 2020).

46. Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput.
Vis. 115, 211–252 (2015).

47. Fei-Fei, L., Fergus, R. & Perona, P. Learning generative visual models from few training
examples: an incremental bayesian approach tested on 101 object categories. In Proc.
2004 Conference on Computer Vision and Pattern Recognition Workshop 178 (IEEE, 2004).

48. Posch, C., Matolin, D. & Wohlgenannt, R. A QVGA 143 dB dynamic range frame-free
PWM image sensor with lossless pixel-level video compression and time-domain CDS.
IEEE J. Solid State Circuits 46, 259–275 (2011).

49. Fischer, T. et al. QDTrack: quasi-dense similarity learning for appearance-only multiple
object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 45, 15380–15393 (2023).

50. Pang, J. et al. Quasi-dense similarity learning for multiple object tracking. In Proc. 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 164–173
(IEEE, 2021).

51. Zhou, Z. et al. RGB-event fusion for moving object detection in autonomous driving. In
Proc. 2023 IEEE International Conference on Robotics and Automation (ICRA) 7808–7815
(IEEE, 2023).

52. Prophesee Evaluation Kit - 2 HD. https://www.prophesee.ai/event-based-evk (2023).
53. Prophesee. Transfer latency. https://support.prophesee.ai/portal/en/kb/articles/

evk-latency (2023).
54. Cho, H., Cho, J. & Yoon, K.-J. Learning adaptive dense event stereo from the image

domain. In Proc. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) 17797–17807 (IEEE, 2023).

55. Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In Proc. 2019
International Conference on Learning Representations (OpenReview.net, 2019).

56. Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D. & Wilson, A. G. Averaging weights leads
to wider optima and better generalization. In Proc. 34th Conference on Uncertainty in
Artificial Intelligence (UAI) Vol. 2 (eds Silva, R. et al.) 876–885 (Association For Uncertainty
in Artificial Intelligence, 2018).

57. Graham, B., Engelcke, M. & van der Maaten, L. 3D semantic segmentation with
submanifold sparse convolutional networks. In Proc. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition 9224–9232 (IEEE, 2018).

58. Cannici, M., Ciccone, M., Romanoni, A. & Matteucci, M. Asynchronous convolutional
networks for object detection in neuromorphic cameras. In Proc. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 1656–1665
(IEEE, 2019).

59. Maqueda, A. I., Loquercio, A., Gallego, G., García, N. & Scaramuzza, D. Event-based vision
meets deep learning on steering prediction for self-driving cars. In Proc. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition 5419–5427 (IEEE, 2018).

60. Forrai, B., Miki, T., Gehrig, D., Hutter, M. & Scaramuzza, D. Event-based agile object
catching with a quadrupedal robot. In Proc. 2023 IEEE International Conference on
Robotics and Automation (ICRA) 12177–12183 (IEEE, 2023).

61. Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proc. 2014 IEEE Conference on Computer Vision
and Pattern Recognition 580–587 (IEEE, 2014).

62. Girshick, R. Fast R-CNN. In Proc. 2015 IEEE International Conference on Computer Vision
(ICCV) 1440–1448 (IEEE, 2015).

63. Ren, S., He, K., Girshick, R. & Sun, J. in Advances in Neural Information Processing Systems
Vol. 28. (eds Cortes, C. et al.) 91–99 (Curran Associates, 2015).

64. Liu, W. et al. SSD: single shot multibox detector. In Proc. 2016 European Conference of
Computer Vision (ECCV) Vol. 9905, 21–37 (eds Leibe, B. et al.) (Springer, 2016).

65. Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You Only Look Once: unified, real-time
object detection. In Proc. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 779–788 (IEEE, 2016).

66. Redmon, J. & Farhadi, A. YOLOv3: an incremental improvement. Preprint at https://arxiv.
org/abs/1804.02767 (2018).

67. Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011).
68. Mitra, S., Fusi, S. & Indiveri, G. Real-time classification of complex patterns using

spike-based learning in neuromorphic vlsi. IEEE Trans. Biomed. Circuits Syst. 3, 32–42
(2009).

69. Sanket, N. et al. EVDodgeNet: deep dynamic obstacle dodging with event cameras.
In Proc. 2020 IEEE International Conference on Robotics and Automation (ICRA)
10651–10657 (IEEE, 2020).

70. Gehrig, M., Shrestha, S. B., Mouritzen, D. & Scaramuzza, D. Event-based angular velocity
regression with spiking networks. In Proc. 2020 IEEE International Conference on Robotics
and Automation (ICRA) 4195-4202 (IEEE, 2020).

71. Lee, J. H., Delbruck, T. & Pfeiffer, M. Training deep spiking neural networks using
backpropagation. Front. Neurosci. 10, 508 (2016).

72. Amir, A. et al. A low power, fully event-based gesture recognition system. In Proc. 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 7388–7397
(IEEE, 2017).

73. Perez-Carrasco, J. A. et al. Mapping from frame-driven to frame-free event-driven vision
systems by low-rate rate coding and coincidence processing–application to feedforward
ConvNets. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2706–2719 (2013).

74. Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X. & Benosman, R. HATS: histograms
of averaged time surfaces for robust event-based object classification. In Proc. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition 1731–1740 (IEEE, 2018).

75. Sekikawa, Y., Hara, K. & Saito, H. EventNet: asynchronous recursive event processing.
In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
3882–3891 (IEEE, 2019).

76. Mitrokhin, A., Fermuller, C., Parameshwara, C. & Aloimonos, Y. Event-based moving object
detection and tracking. In Proc. 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE, 2018).

77. Qi, C. R., Yi, L., Su, H. & Guibas, L. J. in Advances in Neural Information Processing Systems
pages 5099–5108 (MIT, 2017).

78. Groh, F., Wieschollek, P. & Lensch, H. P. A. Flex-convolution (million-scale point-cloud
learning beyond grid-worlds). In Proc. Computer Vision – ACCV 2018 Vol. 11361
(eds Jawahar, C. et al.) 105–122 (Springer, 2018).

79. Zhao, J., Ji, S., Cai, Z., Zeng, Y. & Wang, Y. Moving object detection and tracking by event
frame from neuromorphic vision sensors. Biomimetics 7, 31 (2022).

80. Gehrig, D., Rebecq, H., Gallego, G. & Scaramuzza, D. EKLT: asynchronous photometric
feature tracking using events and frames. Int. J. Comput. Vis. 128, 601–618 (2019).

81. Zhang, L., Zhang, H., Chen, J. & Wang, L. Hybrid deblur net: deep non-uniform deblurring
with event camera. IEEE Access 8, 148075–148083 (2020).

82. Uddin, S. M. Nadim, Ahmed, SoikatHasan & Jung, YongJu Unsupervised deep event
stereo for depth estimation. IEEE Trans. Circuits Syst. Video Technol. 32, 7489–7504
(2022).

83. Tulyakov, S. et al. Time lens++: event-based frame interpolation with parametric nonlinear
flow and multi-scale fusion. In Proc. 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) 17734–17743 (IEEE, 2022).

84. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach.
Intell. 22, 1330–1334 (2000).

85. Lin, T.-Y. et al. Microsoft COCO: common objects in context. In Proc. 2014 European
Conference of Computer Vision (ECCV), 740–755 (Springer, 2014).

86. Fey, M. & Lenssen, J. E. Fast graph representation learning with PyTorch geometric.
In Proc. ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds
(ICLR, 2019).

Acknowledgements We thank M. Gehrig, M. Muglikar and N. Messikommer, who contributed
to the curation of DSEC-Detection, and R. Sabzevari for providing insights and comments.
This work was supported by Huawei Zurich, the Swiss National Science Foundation through
the National Centre of Competence in Research (NCCR) Robotics (grant no. 51NF40_185543)
and the European Research Council (ERC) under grant agreement no. 864042 (AGILEFLIGHT).

Author contributions D.G. formulated the main ideas, implemented the system, performed the
experiments and data analysis, and wrote the paper; D.S. contributed to the main ideas, the
experimental design, analysis of the experiments, writing of the paper, and provided funding.

Funding Open access funding provided by University of Zurich.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-024-07409-w.
Correspondence and requests for materials should be addressed to Daniel Gehrig or
Davide Scaramuzza.
Peer review information Nature thanks Alois Knoll and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://github.com/uzh-rpg/dagr
https://github.com/uzh-rpg/dagr
https://github.com/uzh-rpg/dsec-det
https://www.prophesee.ai/event-based-evk
https://support.prophesee.ai/portal/en/kb/articles/evk-latency
https://support.prophesee.ai/portal/en/kb/articles/evk-latency
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://doi.org/10.1038/s41586-024-07409-w
http://www.nature.com/reprints

Article

Extended Data Fig. 1 | Overview of the network architecture of DAGr.
(a) General architecture overview showing the CNN-based ResNet-1830 branch
and the GNN. Each sensor modality is processed separately, while sharing
features, and adding objectness, classification and regression scores at the
output. (b) Directed feature sampling layer. Graph nodes sample features at the
corresponding pixel locations and concatenate them with their own feature.
(c) Residual blocks, with arguments n and m denoting input an output channels

dimension. The + 2 means concatenation with the 2D node position. (d) Max
pooling layer with arguments gx, g y and gt denoting the number of grid cells in
each dimension. (e) Multiscale YOLOX-inspired detection head, outputting
bounding boxes (regression), class scores and object confidence. (f) Look-up-
Table Spline Convolution (LUT-SC), which use uses discrete-valued relative
distance between neighboring nodes to look up a weight matrices.

Extended Data Fig. 2 | Asynchronous graph operations for a single event.
(a) Update rule for convolution layers. Node position or feature changes result
in update messages from the changed node (orange arrows). Node position
changes result in recompute messages to the changed node (green messages).
(b) Update pruning in pooling layers. If a changed input nodes is in the currently
unused (grayed out) set, it does not have a feature higher than the current
output and it does not change the output node sufficiently to change rounding,
the update is pruned. (c) Update propagation applied to multiple layers. Before
pooling, edges are directed, so the number of computed messages remains
constant with network depth. After pooling, bidirectional edges appear,

leading to a growth in the number of computed messages in lower layers.
(d) To reduce this growth, directed voxel grid pooling is introduced. Different
to standard pooling, directed pooling max-pools over the time dimension, and
filters edges for which the source node has a higher timestamp than the input
node (grayed out), resulting in a directed event graph even after pooling.
(e) Asynchronous updating of directed pooling layer. Sometimes edges are
inverted when an older node is promoted to a newer node through max-pooling
of the time dimension. In this case, the edges need to be reversed, leading to a
new message (pink) being sent to and from the updated node.

Article

Extended Data Fig. 3 | Sensitivity analysis of our method. (a) Performance
of DAGr+ResNet-50 on the DSEC-Detection test-set for different event-to-
image synchronization errors. (b) Object detection score of our method for
differently interpolated ground truth. Here we use the DSEC-Detection subset
with object tracks with a length of at least four. (c) Performance of different

CNN backbones with DAGr-S on the full DSEC-Detection test set, with and
without CNN latency considered. All performances are measured in mAP
(higher is better). Speed refers to the average runtime of the CNN alone over
images from the test set.

Extended Data Fig. 4 | Ablations on different network components of the
GNN. (a-d) Effect of update pruning due to max pooling. We interpret max
pooling as a kind of event filter. In (a-b) we show an example of aggregated
events before (a) and after (b) filtering. This filter acts as a saliency detector,
only letting through events with “new information”, and removing redundant
events in high event rate regions. This results in a more uniform distribution of
events (c). We can control the filter strength by modulating the number of

output features, c. As seen in (d), increasing c increases both computation and
mAP. However, mAP growth drastically reduces in slope after c = 24. The dot
size is proportional to c, and ϕ measures the proportion of updates that pass
through the filter. In our baseline setting with c = 16, we see that only 27% of
updates pass the first max pooling layer. (e) Features affecting computational
complexity. (f) Features affecting accuracy.

Article

Extended Data Fig. 5 | Ablations on components of the hybrid network.
(a-c) Compare the network performance between two frames, on a subset of
DSEC-Detection. (a) Our methods performance with ResNet-18, ResNet-34, and
ResNet-50 backbones, with events (green), and without events (red). Methods
without events propagate detections from the image at t = 0 to the current
time. (b) Comparison of our method to Events+YOLOX34 (blue), a baseline

which takes in concatenated images and events up to time t. (c) Drop in mean
average precision (mAP) over time, for each method. (d-c) Compare the
network performance on the full DSEC-Detection test set. (d) Ablation on the
fusion strategies between GNN-based detections from events and CNN-based
detections from images. (e) Ablation on CNN pretraining and feature
concatenation.

Extended Data Fig. 6 | Preview of DSEC-Detection. (a-c) Preview of samples
from the training (a), validation (b) and test set (c) of DSEC-Detection. It
features spatiotemporally aligned events and frames with object detection

labels for pedestrians and cars. (d) Breakdown of the data in DSEC-Detection,
and comparison with related work.

Article
Extended Data Table 1 | Quantitative comparison of our method against state-of-the-art

(a) Comparison against asynchronous methods in terms of computational complexity, task performance, and energy consumption. Results of event-based methods on the Gen1 detection
dataset41 and N-Caltech10142. (b) Comparison of event and image-based detectors on DSEC-Detection. Here, methods are tasked to predict labels 50 ms after the first image, given a single
image, and events. Speed refers to the average runtime of event insertion into the GNN averaged over the dataset.

Extended Data Table 2 | Overview of the automotive cameras
that are currently in use

For each camera we provide the resolution in megapixels (MP), frames per second (FPS) and
perceptual latency, in milliseconds. Data from refs. 4–9,52.

	Low-latency automotive vision with event cameras
	System overview
	Using only events
	Using images and events
	Inter-frame detection performance
	Bandwidth–performance trade-off
	Discussion
	Online content
	Fig. 1 Bandwidth–latency trade-off.
	Fig. 2 Overview of the proposed method.
	Fig. 3 Comparison summary of our method with state-of-the-art methods.
	Fig. 4 Comparison of inter-frame detection performance for our method and state-of-the-art methods.
	Fig. 5 Qualitative results of the proposed detector for edge-case scenarios.
	Extended Data Fig. 1 Overview of the network architecture of DAGr.
	Extended Data Fig. 2 Asynchronous graph operations for a single event.
	Extended Data Fig. 3 Sensitivity analysis of our method.
	Extended Data Fig. 4 Ablations on different network components of the GNN.
	Extended Data Fig. 5 Ablations on components of the hybrid network.
	Extended Data Fig. 6 Preview of DSEC-Detection.
	Extended Data Table 1 Quantitative comparison of our method against state-of-the-art.
	Extended Data Table 2 Overview of the automotive cameras that are currently in use.

