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ABSTRACT

Tra�c monitoring plays a crucial role in urban planning, transportation management,

and road safety initiatives. However, existing monitoring systems often struggle to

balance the need for high-resolution data acquisition and resource e�ciency. This

study proposes an innovative approach leveraging neuromorphic sensor technology to

enhance tra�c monitoring e�ciency while still exhibiting robust performance when

exposed to di�cult conditions. Neuromorphic cameras, also called event-based cam-

eras, with their high temporal and dynamic range and minimal memory usage, have

found applications in various fields. However, despite their potential, their use in

static tra�c monitoring is largely unexplored. This study introduces eTraM, the

first-of-its-kind fully event-based tra�c monitoring dataset, to address the gap in ex-

isting research. eTraM o↵ers 10 hr of data from diverse tra�c scenarios under varying

lighting and weather conditions, providing a comprehensive overview of real-world sit-

uations. Providing 2M bounding box annotations, it covers eight distinct classes of

tra�c participants, ranging from vehicles to pedestrians and micro-mobility. eTraM’s

utility has been assessed using state-of-the-art methods, including RVT, RED, and

YOLOv8. The quantitative evaluation of the ability of event-based models to gener-

alize on nighttime and unseen scenes further substantiates the compelling potential

of leveraging event cameras for tra�c monitoring, opening new avenues for research

and application.
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Chapter 1

INTRODUCTION

Intelligent Transportation Systems (ITS) represent the intersection of cutting-edge

technology and transportation infrastructure, revolutionizing how we navigate and

manage the movement of people and goods. At its core, ITS involves a sophisticated

network of sensors, cameras, communication systems, and advanced algorithms to

enhance the e�ciency, safety, and sustainability of transportation systems. In the

dynamic landscape of such modern transportation, ITS has a direct impact on every-

one by optimizing crucial tasks like tra�c flow and route optimization while ensuring

high safety standards (Sussman (2008)). By leveraging real-time data and intelligent

algorithms, ITS facilitates the seamless coordination of vehicles, pedestrians, and

other participants in the transportation ecosystem.

The rapid advancements in deep learning technology over recent years have sig-

nificantly impacted real-time systems like ITS, opening up new possibilities for tasks

previously deemed not feasible. Tra�c participant detection, an essential task in ITS,

aims to provide information assisting counting, speed measurement, identification of

tra�c incidents, tra�c flow prediction, etc. However, to be truly e↵ective, detection

methods must meet stringent criteria: they must operate in real-time, withstand vari-

ations in lighting and weather conditions, and minimize storage requirements. For

instance, in the span of just 1 s, a vehicle may travel over 8.3m on average, and a

pedestrian could cover over 1.43m, leading to potential misses in fast-paced tra�c

scenarios and introducing motion blur concerns (Zhang et al. (2023)). Moreover,

nighttime and di↵erent weather conditions make the detection task more challenging

as many features such as edge, corner, and shadow do not work due to varying illu-
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mination. Detectors tend to rely on features like headlights, rearlights, and beams to

detect vehicles. A workaround to detect tra�c participants in such cases is to rely

on specific detectors for specific cases, eg. a detector that learns texture information

for daytime and another detector for utilizing tail-light information for nighttime.

However, it is very di�cult to develop a universal method for detection in varied

lighting conditions (Yang and Pun-Cheng (2018)). Pedestrian detection becomes an

even more challenging task since they do not have such illuminating features that

the detectors could use (Ghari et al. (2024)). In the face of these limitations and the

recent algorithmic developments, there exists immense potential in exploring various

sensor technologies.

1.1 Motivation and Contribution

The integration of event-based cameras into existing ITS infrastructure holds

great promise for robust tra�c participant detection in real-time scenarios. Event-

based cameras operate on a fundamentally di↵erent principle compared to conven-

tional frame-based cameras, capturing asynchronous and continuous streams of pixel-

level brightness changes instead of traditional still frames at fixed frequencies. Each

”event” is represented by a tuple �x, y, p, t� corresponding to an illuminance change by

a fixed relative amount at pixel location (x, y) and time t, with the polarity p ∈ {0,1}
indicating whether the illuminance was increasing or decreasing. This approach not

only reduces computational throughput burdens and storage requirements but also en-

hances sensitivity to motion and dynamic events. Event cameras achieve exceptional

temporal resolution (over 10K fps) and high dynamic range (above 120dB) (Rebecq

et al. (2021)), prompting explorations into visual perception and robotics (Gallego

et al. (2019); Zheng et al. (2023)), and its various applications in ITS (Rodŕıguez-

Gomez et al. (2020); Tomy et al. (2022); Gallego et al. (2019)).
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Existing multimodal tra�c datasets from sensors such as RGB cameras, LiDAR,

and Radar have been utilized for several tra�c detection tasks in the context of

autonomous vehicles (AV) (Geiger et al. (2012); Sun et al. (2019); Caesar et al. (2020);

Chen et al. (2020)). However, a largely unexplored yet promising domain lies in

the use of event cameras for tra�c detection for tra�c monitoring. This serves as

an inspiration to contribute a first-of-its-kind, fully event-based tra�c monitoring

dataset.

In this work, I present eTraM (Verma et al. (2024)), a novel, fully event-based

tra�c perception dataset curated using the state-of-the-art high-resolution Prophesee

EVK4 HD event camera (EVK (2023)). The dataset spans over 10hr of annotated

event data, provided from a fixed perspective that facilitates comprehensive tra�c

monitoring. Experts from the local transportation department were consulted, and

an event camera was strategically mounted over selected sites (intersections, road-

ways, and local streets) to collect tra�c data under diverse conditions. The data

collection process was systematically conducted across various weather and lighting

conditions spanning challenging scenarios such as high glare, overexposure, under-

exposure, nighttime, twilight, and rainy days. eTraM possesses annotations that

include over 2M bounding boxes of tra�c participants such as vehicles (cars, trucks,

buses, trams), pedestrians, and various micro-mobility (bikes, bicycles, wheelchairs)

as shown in Figure 1.1. eTraM o↵ers the perspective of a static camera captured at

a variety of scenes and varying elevations, further enhancing its versatility and ap-

plicability in real-world scenarios. This comprehensive approach ensures that eTraM

captures not only the routine dynamics of tra�c but also the nuances and chal-

lenges presented by a broad spectrum of scenarios and participants. The richness and

breadth of the dataset are tested through various experiments, and its generalization

on nighttime and unseen scenes has been evaluated. eTraM stands as a valuable re-
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source, propelling research and innovation in the evolving field of event-based tra�c

perception in ITS.

The contributions of this thesis can be summarized as follows:

1. I introduce eTraM, a first-of-its-kind fully event-based dataset from a static per-

spective. The dataset encompasses a diverse variety of tra�c scenarios (scenes,

weather, and lightning conditions) and participants (vehicles, pedestrians, and

micromobility users), with over 2M bounding box annotations for detection and

tracking tasks.

2. Establish detection and tracking baselines using state-of-the-art event-based

approaches on eTraM across the various tra�c monitoring scenarios and lighting

conditions.

3. Quantitatively evaluate how sensor invariance to absolute illumination a↵ects

the generalization capabilities of event-based approaches on nighttime data.

4. Quantitatively analyze the impact of unseen scenarios and variation in object

size on event-based data.
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Figure 1.1: Unveiling The Dynamic World Of Road Tra�c: A Glimpse Into Our

Event-based Tra�c Monitoring Dataset Featuring Diverse Tra�c Participants, In-

cluding Pedestrians, Various Sized Vehicles, And Micro-mobility Users That Include

Cyclists, Wheelchair Users, And Bikers.
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Chapter 2

BACKGROUND

For many years, traditional frame cameras have been widely used for various tasks.

These applications have seen a significant boom over the last few years, thanks to

the availability of large amounts of data and computing resources. This has been

instrumental in recent breakthroughs, especially in areas that involve natural language

processing and generative artificial intelligence (AI). However, for more real-time

tasks, they su↵er from a bandwidth latency trade-o↵, which further a↵ects their

performance under bad lighting conditions and rapid movements. Frame cameras

with high frame rates come at the expense of bandwidth overhead and increased

costs, hindering their e�cacy in real-world applications.

To address these constraints, researchers have explored alternative sensor tech-

nologies such as RGBD, LiDAR, and Radar, seeking to complement the capabilities

of traditional frame cameras. Subsequently, numerous studies have discussed the

necessity of diverse sensors while deliberating on the significance of various sensor

combinations. For instance, the work by Harley et al. (2022) examines the boost that

radar data can provide to camera-only infrastructure for bird’s eye view perception

and explores its trade-o↵s and gaps with the more expensive LiDAR-enabled systems.

However, a promising avenue that remains relatively underexplored is using event

cameras in Intelligent Transportation Systems, especially for real-time long-term mon-

itoring. These sensors, which operate on a fundamentally di↵erent principle than

traditional cameras, o↵er the potential to overcome the bandwidth-latency trade-o↵

by only capturing changes in the scene, thus reducing the data load and enabling

more e�cient processing.
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2.1 Neuromorphic Sensing

Neuromorphic sensors, commonly also known as event or dynamic vision sensors

(DVS), represent a paradigm shift in the field of computer vision. Figure 2.1 (a) is

the IMX636HD camera realised through the collaboration between Prophesee and

SONY (EVK (2023). Unlike traditional frame-based cameras, which capture entire

scenes at fixed intervals, event cameras are inspired by the e�cient and selective pro-

cessing observed in biological vision systems. Instead of continuously capturing entire

scenes, event cameras mimic the behavior of the human retina, detecting and report-

ing individual pixel-level changes in brightness asynchronously and with remarkable

temporal precision.

(a) (b)

Figure 2.1: Event Generation Model: (a) Is The Compact IMX636HD Event Camera

By Prophesee And SONY, And (b) Graphically Illustrates (Prophesee S.A (2024a))

How CD ON (Positive Polarity) And CD OFF (Negative Polarity) Events Are Trig-

gered Due To A Change In The Log Of Photocurrent.

Just as our eyes focus only on relevant changes in our field of view, event cameras

are designed to selectively detect significant changes in pixel intensity, allowing event

cameras to operate in real time. Each pixel at the spatial coordinates �x, y� of
7



the cameras is responsible for triggering an event �x, y, t, p� when the logarithmic

intensity change L at that pixel exceeds a predefined constant threshold C. The

above condition can be mathematically represented as,

L(x, y, t) −L(x, y, t − �t) = p ×C (2.1)

Here, t−�t is the time when the last event at that pixel was triggered, and p ∈ {+1,−1}
is the polarity of the event. A positive or negative polarity event is generated based

on whether there was an increase or decrease observed at that pixel. The working

principle is illustrated in Figure 2.1 (b). Every time the value of log(photocurrent)
increases by fixed amounts, consecutive CD ON events are triggered. Similarly,

CD OFF events are triggered for every threshold amount of decrease in the value

of log(photocurrent). This threshold can be manually configured depending on the

sensor and is often referred to as the bias. It can be used to determine the sensor’s

sensitivity to the change in photocurrent and the rate at which they are allowed to

occur.

The output of the event camera, a stream of �x, y, p, t� events, can be visualized in

a two-channel representation within a three-dimensional space. Here, two dimensions

constitute the spatial component capturing the location of the event in the image co-

ordinates of the scene, while the third dimension represents the temporal coordinates,

indicating precisely when the event occurred. This spatial-temporal representation

facilitates e�cient processing and analysis of dynamic scenes, enabling tasks such as

object tracking, motion estimation, and scene reconstruction with high speed and

accuracy.

Unlike traditional cameras constrained by fixed frame rates, event cameras adapt

asynchronously to changes in the scene, ensuring that no crucial information is missed.

Meanwhile, a frame camera’s output consists of a sequence of static frames captured
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at regular intervals, leading to information loss between consecutive frames, especially

in dynamic scenes. Conversely, the output stream of an event camera showcases a

continuous flow of events, preserving every significant change in the scene without

any loss of information. This stark contrast in the output streams of event cameras

and traditional frame cameras is illustrated in Figure 2.2. The continuous stream

of events enables event cameras to excel in scenarios with rapid motion or dynamic

lighting conditions. On the other hand, in cases where the object is moving at a high

speed, a motion blur is induced in the frames due to the relatively longer exposure

time. This is usually tackled by increasing shutter speed, but this comes at the cost

of increased redundancy as well as increased bandwidth requirements. This example

is illustrated in Figure 2.2 (b), where event cameras continue to smoothly capture

such cases due to their working principle. This is made possible due to the high

temporal resolution of event cameras, with events being detected at resolutions

greater than 10K fps and asynchronous pixel latency lower than 10K microsecond.

Another compelling advantage of event cameras lies in their ability to avoid cap-

turing redundant information and thus have a low power requirement. Traditional

frame cameras may often waste resources by capturing unchanged regions of the scene,

leading to unnecessary data processing and storage. This is highly disadvantageous

in long-term monitoring applications. In contrast, event cameras only transmit infor-

mation when there is a change in pixel intensity, e↵ectively eliminating the need to

capture and process unchanged regions of the scene continuously, conserving band-

width and power. This selective approach not only enhances e�ciency but also enables

event cameras to perform exceptionally well in scenarios with minimal motion, where

traditional cameras may struggle to deliver satisfactory results.

Very importantly, their exceptionally high dynamic range, exceeding 120dB,

significantly surpasses the 60dB range of high-quality, frame-based cameras. This
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Standard 
frame-based 

camera
(data loss) 

Event-based 
camera
(no loss)

Standard 
frame-based 

camera
(motion blur)

Event-based 
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(no blur)
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(b)

Figure 2.2: Contrasting Standard Camera With Event Camera Illustrating High Tem-

poral Resolution: (a) Demonstrates The Data Loss In Standard Cameras Between

Consecutive Frames (redrawn From Mueggler et al. (2014)). Meanwhile, (b) Illus-

trates Motion Blur Typical In Frame-based Cameras During Fast Motion, A Phe-

nomenon Absent In Event-based Cameras.
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enables them to capture information across a broad spectrum, from moonlight to

daylight. This superior range is attributed to the logarithmic scale operation of the

photoreceptors in the pixels and the independent functioning of each pixel, which

eliminates the need for a global shutter. Similar to biological retinas, event camera

pixels exhibit adaptability to both very dim and extremely bright stimuli.

2.2 Event-based Datasets

Despite the tremendous potential of event cameras, the scarce availability of

datasets has been one of the biggest hurdles in the advancement of event-based vision

for various applications. However, with the increasing accessibility of event-based

sensors, a notable rise in datasets and, consequently, in research and development of

event-based vision has been seen. This section aims to provide an overview of the

evolution of event-based datasets over time, with a specific focus on datasets relevant

to Intelligent Transportation Systems (ITS).

2.2.1 Early event-based datasets

Due to the lack of commercially available event cameras and high costs, early

event-based datasets often involved the transformation of frame-based datasets

into event streams. A noteworthy example is the work in Orchard et al. (2015), where

MNIST (Lecun et al. (1998)) and Caltech-101 (Fei-Fei et al. (2006)) datasets were

converted to event streams by moving an event camera in front of a screen display-

ing frame data. These datasets proved themselves useful for benchmarking various

event-based algorithms; however, converting frame-based datasets still required event

cameras, which were not easily available. Later works proposed event simulators

like ESIM (Rebecq et al. (2018)), vid2e (Gehrig et al. (2020)) and v2e (Hu et al.

(2021)). The advantage of these simulators was their ability to leverage any existing
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widely-used frame-based dataset and model them into their event-based counterparts

without the need to own an event camera. There also exists a DVS camera sensor

in the CARLA simulator (Dosovitskiy et al. (2017)) that allows the simulation of

specific situations and scenarios in a controlled manner.

2.2.2 Ego-motion event-based datasets

Due to their temporal prowess, research in event-based vision has attracted the

interest of many researchers from an ego perspective where quick response is key.

Hence, with an increase in the accessibility of event cameras in recent years ego-

motion event-based datasets have seen a rise. The initial e↵orts in deploying

event cameras for driving scenarios was pioneered in the works in DDD17 Binas

et al. (2017), and DDD20 Hu et al. (2020) using a 346x260 pixels DAVIS sensor.

These datasets focused on steering angle prediction, with DDD17 having 12 hours

of driving data. Later, DDD20 extended DDD17 to have a total of 51 hours of

driving data. MVSEC Zhu et al. (2018a) presents a multimodal stereo dataset fusing

346x260 DAVIS sensors along with LiDARs, IMUs, and RGB cameras for three-

dimensional perception tasks, such as feature tracking, visual odometry, and stereo

depth estimation, marking the first work to involve event-cameras from a multi-sensor

fusion approach. DSEC Gehrig et al. (2021) further expands these fusion e↵orts by

including 390K annotations for detection tasks on an hour of multimodal stereo data

using 640x480 pixels Prophesee Gen3.1 sensors.

Prophesee Prophesee (2023) introduced two substantial ego-motion datasets for

detection tasks in quick succession, the Gen1 Automotive dataset (de Tournemire

et al. (2020)) and the 1 Megapixel Automotive dataset (Perot et al. (2020)) using their

own manufactured cameras. The Gen1 Automotive Detection Dataset de Tournemire

et al. (2020) encompasses a total of 255,781 manually annotated bounding boxes
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(228,123 cars and 27,658 pedestrians instances) acquired over a span of 39 hours us-

ing 304×240 pixels Prophesee Gen1 sensor. 1 Megapixel Automotive Dataset Perot

et al. (2020) stands out as the most comprehensive ego-motion event-based detec-

tion dataset. It encompasses 15 hours of recorded footage, featuring a resolution

of 1280×720 pixels, with 25 million generated bounding boxes. However, they are

unable to provide extensive nighttime annotations due to their automated labeling

protocol. In 2023, the PEDRo dataset (Boretti et al. (2023)) was released, which

was the first event-based dataset that focuses on people detection from a robotics

perspective. It contains 43,259 bounding boxes from 119 recordings with an average

duration of 18s.

2.2.3 Fixed perception event-based datasets

Ego-motion datasets capture events from the background as well due to their rel-

ative motion with respect to the moving camera, thus leading to datasets from an

ego-motion perspective sacrificing the sparse nature of event-based data. Despite

this not occurring when cameras are not moving, fixed perception event-based

datasets have been few. Datasets such as DVS-Pedestrian (Miao et al. (2019)) are

limited to pedestrian detection using a static 346x260 pixels DAVIS346 camera. The

dataset has 12 recorded sequences containing 4670 labeled instances of pedestrians.

DVS-OUTLAB (Bolten et al. (2021)) explores the plausibility of using event cameras

for long-time monitoring purposes. It consists of recordings from three fixed 768x640

pixels CeleX-4 DVS event cameras featuring outdoor urban public areas involving per-

sons, dogs, bicycles, sportsball as objects of interest. While DVS-OUTLAB presents

a dataset from an outdoor environment, it does not primarily focus on environments

with interactions between various tra�c participants.
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Dataset Name Year Duration
Perspective

Tra�c

Participants
Lighting Weather No. of

Bbox
Scenarios

Ego Static VH PED MM Day Night Twilight Clear Rainy

DDD17 Binas et al. (2017) 2017 12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ - Driving

MVSEC Zhu et al. (2018a) 2018 - ✓ ✓ ✓ ✓ - Driving, Handheld

DVS Pedestrian Miao et al. (2019) 2019 0.1 ✓ ✓ ✓ ✓ ✓ 4.6K Walking street

DDD20 Hu et al. (2020) 2020 51 ✓ ✓ ✓ ✓ ✓ ✓ - Driving

Gen1 de Tournemire et al. (2020) 2020 39 ✓ ✓ ✓ ✓ ✓ 255K Driving

1 Megapixel Perot et al. (2020) 2020 15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 25M Driving

DSEC Gehrig et al. (2021) 2021 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 390K Driving

DVS-OUTLAB Bolten et al. (2021) 2021 7 ✓ ✓ ✓ ✓ ✓ 47K Playground

PEDRo Boretti et al. (2023) 2023 0.5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 43K Robotics

eTraM (Ours) 2024 10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2M

Intersections,

Roadways,

Local streets

Table 2.1: A Comprehensive Review Of Event-based Tra�c Datasets From 2017 To

2024. (VH - Vehicle, PED - Pedestrian, MM - Micro-mobility)

Table 2.1 is a comprehensive review of event-based tra�c datasets providing

deeper insights into the duration, perspective, tra�c participants, lighting conditions,

weather, and size.

2.3 Event Representations

Due to the unique characteristics of event data, a myriad of ideas have been

proposed to represent it, depending on the downstream tasks. This section provides an

overview of the various ways event data can be processed and the trade-o↵s incurred

in each of them.

2.3.1 Individual Events

Methods for event-by-event processing, such as probabilistic filters and Spiking

Neural Networks (SNNs), are employed when dealing directly with events. These fil-

ters or SNNs incorporate supplementary information accumulated from past events or

provided by external knowledge. This information is asynchronously integrated with

14



incoming events to generate an output (Yao et al. (2021), Zhang et al. (2022)). SNNs

propagate information sparsely within the network and share similarities with dense

recurrent neural networks (RNNs) in that each spiking neuron maintains an internal

state that updates over time. Unlike RNNs, however, neurons in SNNs emit spikes

only when a certain threshold is exceeded. This non-di↵erentiable spike generation

mechanism poses significant challenges in optimizing these networks. One approach

to mitigate this issue is to circumvent the threshold and instead propagate features

across the receptive field (Messikommer et al. (2020)). However, this modification

sacrifices the sparse-processing property in deeper layers of the network. Conse-

quently, the design and training complexity of SNNs necessitates further exploration

and investigation before achieving competitive performance.

2.3.2 Image/Tensor Representation

Due to the extensive research on frame-based data, it is advantageous to convert

event data into a representation that can be leveraged by these architectures. An

important way to achieve this representation is by using the histogram of events. It

involves assigning each event to a specific cell based on its position (x, y) and a time

bin determined by its timestamp (t).
In Maqueda et al. (2018), the authors define the histogram as the total count of

events that occurred in the corresponding spatial cell within each time bin. However,

the count is done separately for each polarity, which results in a total of two output

channels. Let H represent a four-dimensional tensor with dimensions n, c, h,w, where

n represents the index of the timestamp, c represents the channel for the two polarities,

h represents the height, and w represents the width of the input event stream. Every

new event �x, y, p, t� corresponds to a specific histogram decided by the time bin that

the timestamp corresponds to. Next, the histogram is updated by adding 1 at the
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spatial coordinates of the new event. The mathematical representation of the update

is as shown in Equation 2.2,

H( t
� , p, y, x) =H( t

� , p, y, x) + 1, (2.2)

where � is the time interval.

However, this method leads to the representation losing the fine-grained temporal

resolution in the event data. To retain some temporal information in each tensor,

several methods consider the contribution of a new event as a function proportional

to the proximity of the time at which the new event occurred with the time bin

corresponding to the tensor.

Since there can also be a sudden and uneven trigger of events within the fixed

time intervals, it is possible for some bins to be very dense while some to be extremely

sparse. To tackle such cases, Wang et al. (2019) propose to stack events by a strategy

that considers a fixed number of events rather than a fixed time interval, as discussed

previously. Some works (Liu and Delbrück (2018); Liu and Delbruck (2022)) have

explored the e�cacy of dynamic adjustment of exposure time and inter-slice time in-

tervals. They show that the adaptable control mechanism enhances model robustness

in dynamic environments characterized by diverse motion speeds and scene structures.

2.3.3 Time-Surfaces

The time surface, an alternative event processing method, involves recording the

timestamp of the most recently received event for each pixel. This technique consid-

ers polarities independently, resulting in the output of two channels (Lagorce et al.

(2017)). By doing so, the representation considers the rich temporal information of

the events and can be updated asynchronously.

However, since this gives equal importance to older events, some works incorporate
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an exponential decay to the timestamps to diminish the influence of older events.

Assuming t0 = 0 for simplicity, this decay process can be easily implemented. The

input representation is represented as a three-dimensional tensor �p,w, h�, where p

represents the polarity, h represents the height, and w represents the width of the

input event stream.

For each event �x, y, p, t� when t ≤ ti, its contribution to the time surface at time

ti can be mathematically represented as shown in Equation 2.3,

TSti(p, y, x) = exp(− ti−t
⌧ ), (2.3)

where ⌧ is the normalization constant (Sironi et al. (2018)). As time surfaces only

store a single value corresponding to the latest event, they compress information well.

However, this also leads to a degraded representation in scenes with a lot of textures

since the pixels spike frequently.

2.3.4 Voxel-based

Voxel-based representations translate raw events into the nearest temporal grid

within temporal bins. The concept of the first spatial-temporal voxel grid was intro-

duced in Zhu et al. (2018b), which involves inserting events into volumes using linearly

weighted accumulation to enhance temporal domain resolution. Voxel-based repre-

sentations are often utilized in 3D object recognition, reconstruction, and scene under-

standing tasks, especially when dealing with point clouds obtained from depth sensors

like LiDAR or RGB-D cameras. These representations are valuable for tasks where

spatial relationships and volumetric information are crucial, such as autonomous driv-

ing, robotics, and augmented reality applications. Lately, there has been an increased

interest in leveraging these representations for event data with Baldwin et al. (2022)

proposing a time-ordered recent event (TORE) method aiming to maintain spike
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temporal information with minimal information loss.

2.3.5 Graph-based

A recent line of work tries to exploit the spatio-temporal characteristics of events

by modeling the raw event data as a graph for various downstream tasks like object

classification (Mesquida et al. (2023)), detection (Schaefer et al. (2022)), and optical

flow estimation (Dalgaty et al. (2023)). The graph structure is created based on the

position of the events in the 3-dimensional coordinate frame. Each event may act as

a node in the graph, and edges may be formed based on its proximity to other nodes.

The approach aims to exploit the sparsity of raw event data by transforming events

within a time window into a set of connected nodes. However, a major challenge is

to design architectures in a way that information can propagate over vast distances

in the time dimension. This is especially important when large objects move slowly

with respect to the camera or momentarily halt.
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Chapter 3

THE ETRAM DATASET

eTraM, short for Event-based Tra�c Monitoring, is a dataset with applicability in

event-based long-term and resource-e�cient tra�c monitoring from a static perspec-

tive. This chapter outlines eTraM ’s acquisition framework, preprocessing techniques,

annotation strategies, and statistics, providing deeper insights into the dataset and

its annotations.

3.1 Dataset Acquisition Framework

To capture high-quality data, the Prophesee EVK4 HD event camera (EVK

(2023)), notable for its high resolution (1280×720px), high temporal resolution (over

10,000 fps), dynamic range (above 120dB), and exceptional low light cuto↵ (0.08Lux)

has been used. The sensor was strategically positioned at a height of approximately

6m with a pitch angle of about 35 ° to the ground. The configuration is deliberately

chosen this way to maintain consistency with the placement of tra�c cameras in ex-

isting infrastructure and to ensure comprehensive coverage of interactions between

diverse tra�c participants.

The dataset comprises recorded sequences obtained at multiple intersections, road-

ways, and local streets around Arizona State University, Tempe Campus. The data

sequences were recorded for intervals of 15− 30min at di↵erent times of the day, cov-

ering daytime, nighttime, and twilight. The dataset also observes di↵erent weather

conditions, including sunny, overcast, and rainy. To achieve this, extensive data col-

lection e↵orts were carried out over a span of 8 months. Figure 3.1 shows di↵erent

data acquisition sites considered for data collection.
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Figure 3.1: Data Collection Setup: The First Four Images From The Top Left Display

Daytime Data Collection Sites, The Center Image Shows The Prophesee EVK4 HD

Camera And The Last Four Images Depict Nighttime Collection Sites.

3.2 Preprocessing and Annotation

Given the sensitive nature of the event sensor, it was observed that nighttime data

tends to exhibit higher levels of noise, primarily attributed to reflections and pointed

sources of light from streets and vehicles. To address this challenge and enhance the

quality of the data, the recorded sequences are passed through a spatiotemporal filter

(Brosch et al. (2015)). This spatiotemporal filter works on the idea that events from

real objects should occur closer together in both space and time more often compared

to events from random noises (Gallego et al. (2019)).
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The filtering mechanism discards an event if a threshold amount of events with

the same polarity do not occur within a fixed temporal window in the vicinity of its 8-

neighborhood spatial coordinates. For any e = �x, y, p, t�, this condition is represented

mathematically in Equation 3.1

t+@t�
ti=t

x+1�
xi=x−1

y+1�
yi=y−1

P (ei = �xi, yi, pi, ti�, e) > nthres, (3.1)

where @t represents the temporal window and P(ei, e) equals 1 only when the polarity

ei and e are the identical. A sample visualization demonstrating the significance of

spatiotemporal filtering is illustrated in Figure 3.2.

Figure 3.2: Impact Of Spatiotemporal Filtering On Event Camera Data: Comparison

Of A Noisy Pre-filtered Image (Left) And The Enhanced Clarity Achieved Post-

filtering (Right) On Daytime (Top Row) And Nighttime Data (Bottom Row)

For experiments in future chapters, a temporal window of 10ms with a minimum

threshold of 2 neighboring events has been chosen. The specific filter values were

determined through comprehensive experiments detailed in Bolten et al. (2021) and

further validated through a smaller experiment conducted during the training phase.
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Following the denoising stage, events within the stream are partitioned into dis-

crete time bins and consolidated into a single frame, thereby converting the asyn-

chronous event stream into synchronous frames of 30Hz. These frames are then

annotated using CVAT (Sekachev et al. (2020)), an open-source annotation tool. The

rigorous manual annotation process resulted in the precise identification of 2M 2D

bounding boxes. The format of each event and bounding box annotation is explained

in Table 3.1 and Table 3.2, respectively.

Key Description

x x coordinate of the event in image coordinate frame

y y coordinate of the event in image coordinate frame

p polarity corresponding to event (+1� − 1)
t time stamp of the event occurrence (µs)

Table 3.1: Format Of An Asynchronous Event.

ID Key Description

0 t Timestamp of the bounding box

1 x x coordinate of the top left point of the bounding box

2 y y coordinate of the top left point of the bounding box

3 w width of the bounding box

4 h height of the bounding box

5 class id Class ID of the object

6 track id Tracking ID of the object

7 class confidence Confidence score of detection

Table 3.2: 2D Bounding Box Annotation Format In ETraM.
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3.3 Dataset Statistics

Here, the key characteristics of the collected data and annotations are highlighted.

The dataset encompasses three distinct tra�c monitoring scenarios with 5hr of in-

tersections, 3 hr of roadways, and 2hr of local streets. Each scenario is collected

at multiple locations. For instance, the intersection scenario contains data from 2

four-way, a three-way, and an uncontrolled intersection. Each location has daytime,

twilight, and nighttime data totaling 10hr of data with 5hr of daytime and 5hr of

nighttime data. The dataset contains 2 million instances of 2D bounding box anno-

tations for tra�c participant detection tasks. These annotations additionally include

object IDs, making it possible to track objects. The annotation classes encompass

a range of tra�c participants, from pedestrians and various vehicles (cars, trucks,

buses, and trams) to the inclusion of micro-mobility (cyclists, wheelchair users, and

bikers).

Figure 3.3: A Histogram Illustrating The Event-time Frequency Of ETraM (Static

Event Dataset) As Compared To 1 Megapixel And DSEC (Ego-motion Event

Datasets).
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A comparison of the event distribution in eTraM with other ego-motion event-

based tra�c datasets like 1 Megapixel Automotive and DSEC for 60 sec is performed

to gain insights into the inherent properties of the dataset. It was observed that

the number of events in eTraM was significantly lesser by a factor of 30, as shown

in Figure 3.3. This is accredited to the static nature of the camera in eTraM, which

primarily focuses on moving tra�c participants in a scene. In contrast, other datasets

from an ego-motion perspective capture more data due to the relative motion of the

surrounding infrastructure, leading to a continuous and dense stream of events. This

sparsity of events in eTraM data, combined with the asynchronous nature of events,

leads to low memory utilization. This is particularly advantageous for the memory-

limited devices used in tra�c monitoring infrastructure.

Figure 3.4: The Object Density Of Various Classes Across The Frame.

Figure 3.4 illustrates the spatial distribution of each class within the frame. A

uniform spread of vehicle classes across the entire frame and the pedestrians class
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covering more than 50% of the frame is observed. This is unlike that observed in

various ego-motion event-based datasets, which predominantly feature pedestrians

on the two corners of the frame, which often correspond to the sidewalk. This varied

distribution also safeguards the model from developing a bias for certain classes in a

specific region of the frame.

Figure 3.5: Power-law Distribution Of The Number Of Instances Within An Image

For Most Predominant Classes - Cars And Pedestrians.

To understand more about the occurrences of the instances per frame, the distri-

bution of the major classes - cars and pedestrians is illustrated in Figure 3.5. While

both classes demonstrate a power-law distribution with an increase in the number of

instances per frame, the higher number of cars consistently observed per frame in-

dicates that eTraM has a dense presence of vehicular tra�c compared to pedestrian

activity. This dense presence suggests a higher reliance on vehicular transportation

within the various locations. These observations could be due to the locations chosen

in eTraM. Such insights into the distribution of instances per frame can be valu-

able for understanding tra�c patterns, urban planning, and resource allocation for

transportation infrastructure and safety measures.

25



Figure 3.6: Distribution Of Two Major Tra�c Participant Categories Across Various

Tra�c Sites.

While providing an overview of the overall presence of pedestrian and vehicle

classes in the dataset, these observations prompt a deeper exploration into variations

of the classes across di↵erent tra�c locations in the dataset. Figure 3.6 illustrates the

scene-wise distribution of categories at di↵erent tra�c locations. This also provides

a representation of the real-world dynamics of the major tra�c participants at these

locations. Pedestrians appear to be mostly populated at intersections but witness a

substantial drop in numbers at roadways. Conversely, there is a slight increase in the

number of vehicles observed on roadways, showcasing the di↵erence between inter-

sections and roadways. In contrast, local streets feature a lesser number of instances

from both categories. This also illustrates the importance of monitoring intersec-

tions. At such locations, an equal presence of vehicles and vulnerable road users,

such as pedestrians, results in significantly higher interactions between various tra�c

participants, emphasizing the need for monitoring and improved safety measures.
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Figure 3.7: The Bar Plot Illustrates The Average Duration, In Seconds, Spent By

Instances Of Di↵erent Classes, Providing Insights Into The Temporal Characteristics

Of Each Class In The Dataset.

Figure 3.7 presents the average duration spent by objects from each class at the

tra�c site. This temporal analysis sheds light on the distinctive time dynamics of

di↵erent classes within the dataset. Participants from the pedestrian and wheelchair

classes spend the most time at the tra�c site, which also corresponds to the speed

at which they move. On the other hand, other classes from the vehicle category,

including two-wheelers, tend to comparatively spend less time.

Further analysis is performed on the distribution of di↵erent categories (VH, PED,

AND MM) by the area they cover - small, medium, or large, as shown in Figure 3.8.

Based on this grouping, further analysis is conducted in future chapters to get insights

into the variation of performance of the event-based detectors with the size of objects.

For accessibility and ease of use, eTraM is provided in multiple formats: RAW,

DAT, and H5 (Prophesee S.A (2024b)). Additionally, the annotations are available in

numpy format. The dataset is split into 70% training, 15% validation, and 15% test-
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Figure 3.8: The Bar Plot Illustrates The Average Duration, In Seconds, Spent By

Instances Of Di↵erent Classes, Providing Insights Into The Temporal Characteristics

Of Each Class In The Dataset.

ing, ensuring that each subset has proportional data from each scenario. To the best of

my knowledge, this stands as a first-of-its-kind event-based dataset from tra�c mon-

itoring. To the best of my knowledge, this stands as a first-of-its-kind event-based

dataset for tra�c monitoring. Additionally, the dataset encompasses nighttime data,

enhancing its versatility for a broader range of research applications, some of which

are explored in a future chapter.

28



Chapter 4

BENCHMARKING ETRAM

The chapter provides an overview of the baselines established on eTraM. The ex-

periments are conducted to evaluate the e�cacy of the dataset across diverse scenes

and lighting conditions. Two primary tasks, detection (detailed in Section 4.1) and

tracking (discussed in Section 4.2), make up the evaluation.

For evaluating eTraM on detection tasks, two SoTA tensor-based methods, specif-

ically Recurrent Vision Transformers (RVT) (Gehrig and Scaramuzza (2023)), Recur-

rent Event-camera Detector (RED) (Perot et al. (2020)), and an approach frequently

used for RGB frame-based detection tasks, You Only Look Once (YOLOv8) (Jocher

et al. (2023)) are used. This comparison helps compare how SoTA approaches, uti-

lizing dense tensor representation, perform in comparison to the conventional frame-

based approach, which does not use temporal bins. The evaluations are performed on

the three major categories of tra�c participants - vehicles (VH), pedestrians (PED),

and micro-mobility (MM). The mean Average Precision at a 50% Intersection over

Union threshold (AP50) is reported for object detection, providing a standardized

measure of detection accuracy. For tracking, both Multi-Object Tracking Accuracy

(MOTA) and Multi-Object Tracking Precision (MOTP) are reported, o↵ering a holis-

tic assessment of tracking performance in terms of accuracy and precision.

The meticulous evaluation methodology employed in this study ensures robust

insights into the performance of eTraM across various real-world tra�c scenarios,

laying a solid foundation for further advancements in event-based tra�c monitoring.
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4.1 Tra�c Participant Detection on eTraM

To assess the performance of event-based detectors, the models are trained on

7hr of data and evaluated on 1.5hr of validation and test data. RVT and RED were

trained from scratch over 3days on NVIDIA A100, while YOLOv8 was trained for

2days. Separate evaluations were conducted to provide insights into how each model

performs in di↵erent scenes and lighting conditions. These values facilitate the un-

derstanding of how these models handle diverse and changing contexts where camera

placement and environment are drastically di↵erent.

Tra�c Site Lighting
RVT RED YOLO

PED VH MM All PED VH MM All PED VH MM All

Intersections

Daytime

0.460 0.813 0.315 0.722 0.395 0.593 0.284 0.545 0.167 0.293 0.111 0.190

Roadways 0.430 0.733 0.070 0.627 0.347 0.590 0.055 0.551 0.173 0.290 0.004 0.156

Local Streets 0.196 0.938 0.586 0.316 0.208 0.875 0.695 0.351 0.124 0.559 0.204 0.296

All Scenes 0.304 0.781 0.403 0.572 0.302 0.656 0.251 0.497 0.142 0.309 0.112 0.188

Intersections

Nighttime

0.161 0.465 - 0.262 0.149 0.425 - 0.242 0.071 0.375 - 0.149

Roadways 0.310 0.827 - 0.739 0.362 0.782 - 0.726 0.004 0.229 - 0.117

Local Streets 0.739 0.868 0.097 0.829 0.722 0.831 0.145 0.817 0.198 0.486 0.030 0.239

All Scenes 0.317 0.674 0.064 0.523 0.303 0.660 0.083 0.504 0.123 0.322 0.013 0.153

Overall 0.309 0.717 0.313 0.539 0.303 0.649 0.197 0.491 0.134 0.314 0.086 0.178

Table 4.1: Baseline Evaluation: Comprehensive Evaluation Of State-of-the-art

Tensor-based Approaches RVT, RED, And Frame-based Approach YOLOv8 Across

Various Tra�c Sites (Intersections, Roadways, Local Streets) During Both Daytime

And Nighttime For PED - Pedestrian, VH - Vehicle, And MM - Micro-mobility.

Several key observations that emerged from the evaluation results of tensor-based

models are shown in Table 4.1. Notably, the detection of vehicles consistently outper-

forms pedestrian detection across all scenes and models. The performance on micro-
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mobility shows significant variance, likely due to the smaller number of instances and

the broad range of subjects captured under the category. During daytime, both ve-

hicle and pedestrian detection results are consistent in intersections and roadways.

However, in local streets, vehicle detection improves as compared to other scenes

due to fewer instances and reduced occlusion. A decline in pedestrian detection is

observed, perhaps due to occlusions caused by high pedestrian densities. During

nighttime, vehicle detection in local streets and roadways remains consistent. Inter-

estingly, pedestrian detection improves significantly on local streets at night. This can

be attributed to a combination of less pedestrian-to-pedestrian occlusion, instances

being closer to the camera, and additional visual features like shadows that become

more prominent at night. Due to noise from various light sources, nighttime intersec-

tions observe a substantial drop in performance. Despite this, the performance during

nighttime is at par with daytime scenarios, with an increase in vehicle detection on

roadways at night. This increase could be due to reduced vehicle-to-vehicle occlusion

as fewer vehicles are observed in nighttime conditions.

It is observed that YOLOv8 performs poorly compared to RED and RVT models,

demonstrating the advantage of using tensor-based representation over conventional

frame-based methods. This could be attributed to YOLOv8 not using any temporal

information from the event stream. While RVT and RED do not fully exploit the

temporal component of event streams, they make use of temporal bins in their pre-

processed representations and have recurrent networks constituting their architecture

as well. Figure 4.2 and Figure 4.1 show a qualitative example of the detection task

on eTraM. In summary, the evaluation showcases the relative di�culties of various

tra�c monitoring scenarios and classes and the strength of event-based detectors in

nighttime conditions.
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Figure 4.1: Tra�c Participant Object Detection By RVT. Snapshots Illustrating The

Detection Results Of RVT At Various Tra�c Sites, Showcasing Its Performance In

Diverse Real-world Scenarios.

Figure 4.2: Tra�c Participant Object Detection By RED. Snapshots Illustrate The

Detection Results Of RED At Various Tra�c Sites, Showcasing Its Performance In

Diverse Real-world Scenarios.
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4.2 Multi-Object Tracking on eTraM

Tracking plays an important role in a fixed perspective, long-term monitoring

scenario. Tracking enables the analysis of object behavior over time. By following

the trajectories of objects within the scene, patterns, anomalies, and trends can be

identified. This is particularly valuable in scenarios where abnormal behaviors or

events need to be detected and investigated. In environments with multiple people,

tracking enables the simultaneous monitoring and tracking of multiple individuals.

This capability is essential for Re-Identification (ReID) systems deployed in crowded

or busy spaces, where tracking and re-identifying individuals amidst a crowd pose

significant challenges. Tracking IDs can be crucial for evaluating the tracking ability

of a model, particularly in scenarios where multiple objects are being tracked over

time. Tracking IDs help associate predictions across di↵erent frames, allowing you

to measure how consistently and accurately the model maintains the identity of each

tracked object. Although evaluation of the tracking abilities of models is not possible

in most event-based datasets, eTraM enables it by providing ground truth tracking

IDs for each object.

The Intersection-over-Union (IoU) based thresholding technique (Bochinski et al.

(2017)) is used to establish the tracking baselines on eTraM. This technique tracks

objects by evaluating the intersection over union values of the bounding boxes de-

tected across sequential frames by an object detector model. The detection baseline

results from the Recurrent Event-based Detector (RED) model have been used for the

evaluation. Consequently, this method results in a Multi-Object Tracking Precision

(MOTP) value of 0.18 and a Multi-Object Tracking Accuracy (MOTA) value of 0.28

on eTraM ’s test set. It is worth reiterating that the precise evaluation of tracking

performance on event data is made possible solely through the inclusion of track-
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Figure 4.3: Qualitative Results: Showcasing Ground Truth (Top Row) Annotations

In ETraM And The Corresponding Tracking Of Each Detected Object (Bottom Row)

Where Each Trailing Line Denotes The Path Followed By The Detected Object In

Previous Timesteps.

ing IDs within eTraM. An example of ground truth objects and their corresponding

tracking is illustrated in Figure 4.3.

4.3 Impact of Object Size on Detection Performance

To delve further into the impact of object size on model performance across various

classes, an additional experiment was conducted, building upon the categorization

outlined in the preceding chapter. Objects were classified into three distinct groups

based on the area they occupy: small, medium, and large. This finer granularity in

classification aimed to provide deeper insights into how the size of objects influences

the e�cacy of the model across di↵erent classes.
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Object

Size

RVT RED

PED VH MM All PED VH MM All

Small 0.308 0.705 0.276 0.516 0.324 0.556 0.274 0.385

Medium 0.859 0.722 0.100 0.722 0.661 0.763 0.159 0.561

Large - 0.637 - 0.637 - 0.701 - 0.701

Table 4.2: Evaluation Of Object Size Impact On The Performance Of RVT And RED.

The established benchmarks resulting from this grouping are presented in Ta-

ble 4.2. Upon analysis, it becomes evident that both models exhibit similar trends in

performance. Specifically, instances categorized as medium-sized within the pedes-

trian and vehicle classes consistently demonstrate superior performance compared to

their smaller and larger counterparts. Although vehicles tend to demonstrate similar

performance across all three size classifications, the pedestrian class observes a sig-

nificant drop in small-sized instances. On the other hand, micro-mobility performs

better for small than medium-sized instances. However, the results of micro-mobility

in its best-performing size classification are still worse than the worst performance of

pedestrian and vehicle categories.
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Chapter 5

GENERALIZATION CAPABILITIES OF EVENT DATA

A fundamental requirement for the real-world deployment of event-based detectors

is their ability to demonstrate transferability to unseen scenes. This essential char-

acteristic ensures that the detectors can e↵ectively adapt to new environments and

scenarios encountered in practical applications. Moreover, given that event cameras

are inherently invariant to absolute illuminance levels, it is theoretically expected for

event-based detectors to exhibit transferability to nighttime data as well.

In the upcoming sections, the designed experiments quantitatively evaluate the

transferability potential of event-based detectors. Controlling the training and test

sets in a systematic manner provides comprehensive insights into the extent to which

these detectors can generalize across diverse scenes and lighting conditions. Through

this set of evaluations, the aim is to ascertain the robustness and adaptability of

event-based detectors in real-world scenarios and varied lighting conditions.

Overall, this chapter serves as a detailed exploration into the generalization ca-

pabilities of event data, shedding light on their potential for real-world applications

and providing valuable insights for future research and development.

5.1 Generalization on Night time

Qualitative assessments of event-based detectors’ generalization capabilities to

nighttime scenarios were explored in Perot et al. (2020), where they discuss how

event-based detectors perform better than RGB frame-based detectors during low

light conditions. However, since they do not provide annotated nighttime data due

to their automated labeling protocol, they only measure the hypothesis qualitatively.
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Since eTraM consists of night-time annotated data as well, the following experiment

aims to quantitatively assess how well a detector trained on daytime data can perform

in nighttime conditions and thereby establish the need for night-time data during the

training process. A controlled experiment is conducted where an event-based detec-

tor is trained on a dataset containing 2 hours of daytime data only. To compare the

results of this experiment, the model is fine-tuned with 45 minutes of extra nighttime

data. The two models are evaluated on the same set of previously unseen nighttime

data sequences.

Train Set
RVT RED

VH PED VH PED

Day 0.566 0.166 0.374 0.354

Day+Night 0.761 0.254 0.673 0.422

Table 5.1: Evaluation Of Generalization Capabilities Of RED And RVT On Night

Time Data For PED - Pedestrian And VH - Vehicle Class For Models Trained On

Only Daytime And A Combination Of Daytime And Nighttime Data.

The summarized results of these experiments can be found in Table 5.1. The

trend observed is that across every object class and for both detectors, the models

trained on data supplemented with nighttime sequences consistently outperform mod-

els trained solely on daytime sequences. Despite the expectation that event cameras

would exhibit proficient performance in nighttime scenarios, these observations reveal

that relying solely on daytime data for training event-based detectors may not be suf-

ficient. These models fail to attain comparable performance levels to those achieved

by models trained on nighttime data with the model. This suggests that the unique
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challenges posed by nighttime conditions necessitate explicit training with relevant

data to ensure optimal detector performance. This discrepancy in performance may

be attributed to the unique challenges posed by nighttime conditions, including en-

vironmental interferences and distinct variations of noise inherent in nighttime data

due to the heightened sensitivity of event-based cameras.

While event-detectors aren’t able to generalize on nighttime out of the box, they

have at par results on daytime and nighttime data when trained on the combined

dataset (Table 4.1). This highlights the need for labeled nighttime data to allow

event-based detectors to augment current camera-based systems and perform well

during low-light conditions as well.

5.2 Generalization on Unseen Scenes

To substantiate the ability of event-based detectors to generalize to previously

unencountered tra�c scenes, the model is trained on a subset of the dataset. The

ability to generalize is evaluated by testing each architecture on two independent test

sets, one “held in” that contains sequences from intersections that the model has seen

during the training phase and the other on the “held out” test set with data from an

intersection that is skipped during training.

As depicted in Table 5.2, a comparable performance of the models is observed

across both the major categories considered. On evaluating the model on the “held

out” test set, representing an entirely new and unseen tra�c scene, the model’s gen-

eralization capability is evident. These values are at par with the performance on

the “held in” test set. This similarity in results highlights the model’s ability to

seamlessly extend its learned features and representations to previously unseen tra�c

scenarios, validating its transferability capability across changing environments.
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Test Set
RVT RED

VH PED VH PED

Held In 0.449 0.316 0.556 0.521

Held Out 0.628 0.529 0.572 0.509

Table 5.2: Evaluation Of Generalization Capabilities Of RED And RVT On Unseen

Tra�c Scenarios For PED - Pedestrian And VH - Vehicle Tested On Held In And

Held Out Test Set.

This generalization to unseen intersections is a pivotal characteristic for real-world

deployment. The ability to adapt seamlessly to unseen intersections underscores

its potential applicability in ITS and reinforces its suitability for a broad range of

applications.
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Chapter 6

DISCUSSION

This chapter aims to explore and start a discussion on the potential applications and

advantages of utilizing fixed event-based cameras for tra�c monitoring, particularly

in static roadside environments. While much of the current research in the field pre-

dominantly focuses on ego-motion cameras, this discussion sheds light on the unique

benefits that fixed event cameras o↵er and the various scenarios where they could be

leveraged e↵ectively.

6.1 Event Cameras in Tra�c Monitoring

In this section, the advantages of utilizing event cameras to augment traditional

frame camera systems for various tra�c monitoring tasks in static roadside environ-

ments are explored.

Traditional cameras take continuous snapshots at a fixed frequency, potentially

capturing individuals’ identities and sensitive information. In comparison, event cam-

eras register events significantly, reducing the probability of gathering sensitive infor-

mation of any individual Perot et al. (2020); Bolten et al. (2021). The advantages of

event cameras extend to their performance in low light conditions and their robustness

towards mitigating motion blur. As demonstrated through the baseline evaluations in

Table 4.1, event cameras display equally superior performance in nighttime conditions

while maintaining a high temporal resolution that aids it in substantially reducing

motion blur Rebecq et al. (2021). An essential requirement of long-time tra�c mon-

itoring is the need for resource-e�cient sensors. Since event cameras are designed

to operate on a sparse data stream generated by significant visual changes, they ex-
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hibit lower memory requirements and power consumption compared to traditional

frame cameras Amir et al. (2017); Serrano-Gotarredona et al. (2009). This makes

event cameras sustainable and cost-e↵ective for continuous monitoring over extended

periods.

Figure 6.1: Demonstrating E↵ectiveness Of Event Camera For Tra�c Scenarios: Yel-

low Circle (Top Row) Tracks A Car That Halts At A Stop Sign With Lack Of Motion

Captured In The Third Frame, Red Circle (Bottom Row) Tracks A Car That Violates

The Stop Sign Where Motion Is Continuously Captured In Every Frame. Addition-

ally, The Green Arrow (Top Row) Shows A Car Traveling At A High Speed, Resulting

In A High Event Density.

The e↵ectiveness of event cameras in tra�c monitoring scenarios is further high-

lighted through two practical applications. Firstly, in detecting stop sign violations,

event cameras excel in capturing instantaneous changes in the visual scene, enabling

precise detection of vehicles coming to a halt. Secondly, event cameras are adept at

quickly detecting sudden acceleration or erratic behavior of fast-moving tra�c par-

ticipants. This is a critical capability for identifying potentially hazardous situations

on the road and allowing for prompt intervention or alert generation. Figure 6.1 pro-

vides a clear indicator - the number of events associated with the object - making it

easy to discern whether a moving vehicle is slowing down or has stopped. Given the

e↵ectiveness demonstrated by event cameras in specific tra�c monitoring scenarios,
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Figure 6.2: Qualitative Comparison: Events Captured From A Static Event Camera

(Left) Show Enhanced Visibility Of Moving Vehicles Compared To An Ego-motion

Event Camera (Right).

such as detecting stop sign violations and identifying sudden acceleration or erratic

behavior, it is evident that further explorations in multiview event-based tra�c mon-

itoring (Aliminati et al. (2024))are warranted. Such systems have the potential to

improve the robustness and reliability of tra�c monitoring systems by reducing blind

spots, mitigating occlusions, and improving tracking performance.

6.2 Static and Ego Event-based Datasets

Here, the di↵erence between static event-based datasets and existing ego-motion

event-based datasets is discussed, emphasizing the significance of the former for tra�c

participant detection. A notable disparity between event data and traditional frame-

based data lies in the sparsity of relevant information. This distinct feature allows

event cameras to operate with sub-millisecond latency without compromising resolu-

tion due to bandwidth limitations, as often observed in frame-based cameras. How-

ever, ego-motion datasets tend to sacrifice sparsity in event data because the entire

background moves relative to the camera, resulting in events being generated across
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Figure 6.3: Tra�c Site Diversity In ETraM : Various Instances Encapsulating The

Interactions Amongst Multiple Tra�c Participants Captured From A Static Roadside

Perspective Are Shown With Daytime (First Row), Twilight (Second Row), And

Nighttime (Last Row) Showing Increasing Sensor Noise (Top To Bottom) Due To

Light Sources Such As Headlights And Streetlights.

most of the frame. In contrast, static perspective cameras capitalize on the sparse

nature of event cameras, where events are more likely to correspond to relevant tra�c

entities rather than extraneous background changes. This characteristic significantly

enhances the visibility of tra�c participants too, as shown in Figure 6.2. Another

distinction is the field of view provided by static roadside datasets. Positioned at an

elevated height, these cameras capture a broader scene that includes far-away objects,

while ego-motion datasets are constrained to the vehicle’s immediate surroundings.

The elevated perspective of static datasets proves advantageous, enabling the detec-

tion of tra�c participants at a distance and providing a comprehensive view of the

tra�c environment, as seen in Figure 6.3.
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Chapter 7

CONCLUSION

This chapter summarises the thesis, the limitations of the work, and a few future

directions in event-based research.

7.1 Summary

The thesis proposes eTraM, a large real-world, manually annotated event-based

dataset for event-based tra�c monitoring from a static perspective. The meticulously

curated dataset, captured using the cutting-edge IMX636HD (Prophesee EVKHD4)

high-resolution event camera, provides new opportunities in the world of tra�c detec-

tion and tracking from a static roadside perspective. With over 10 hours of annotated

event data spanning various environmental conditions, eTraM o↵ers insights into the

complex dynamics of tra�c scenarios. The comprehensive annotations, which in-

clude over 2 million bounding boxes of various tra�c participants, from vehicles to

pedestrians and micro-mobility, allow for a holistic understanding of the challenges

posed by diverse scenarios and participants. Through various experiments, the ability

of event-based models to generalize e↵ectively to unseen scenarios is demonstrated,

thus emphasizing its potential in real-world tra�c monitoring. Nighttime generaliza-

tion experiment results highlight the value of labeled nighttime data, enabling the

same event-based detectors to achieve performance that is competitive with daytime

performance. As the field of event-based sensing continues to advance, and as the

demand for enhanced tra�c safety within intelligent transportation systems grows,

eTraM holds the potential to serve as an invaluable resource that can drive the de-

velopment of road safety and tra�c management.
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7.2 Limitations and Future Work

Despite the significant contributions of eTraM and the research conducted, there

are several limitations and future work to improve the current state-of-the-art systems:

1. Conversion to Image/Tensor Representations: The current approaches explored

involve converting event data into image or tensor representations, thereby ne-

glecting the inherent sparsity and temporal resolution in eTraM. Future research

could focus on developing techniques leveraging spiking neural networks and

graph-based representations that leverage the unique characteristics of event-

based data without resorting to conventional image-based representations.

2. Performance on Small Objects: Event-based detectors exhibit notable perfor-

mance degradation when dealing with small-sized objects, particularly micro-

mobility. This limitation may stem from the lack of contour and color informa-

tion in raw event data. Addressing this challenge could involve leveraging other

sensors to complement event data.

3. Class Imbalance in Micromobility Instances: The imbalance in the number of

instances between micromobility and vehicles is observed due to the inherent

dynamics of the tra�c environment. Various data augmentation techniques

and making use of large amounts of synthetic data could help alleviate class

imbalance issues and improve model generalization.

4. Expansion of Dataset: Expanding eTraM to encompass recordings from di↵er-

ent geographical locations and incorporating additional annotation tasks beyond

tra�c monitoring, such as anomaly detection, could broaden the dataset’s scope

and applicability.
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